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Symmetries reduce the complexity of systems and may lead to
useful approximations. Observed deviations from the symmetric
approximation may destroy all symmetries or only some.

Ex 2d: On our planet, the paradigm of the spherical cow is useful:

‘geographic’ symmetry breakings (easy to see): Mount Everest
8.8 km high, 8.8 km · 2π/(40 000 km) ≈ 1.4 · 10−3;

‘geometric’ sym. break. (less evident): (equatorial − polar) radius
= 21.3 km, 21.3 km · 2π/(40 000 km) ≈ 3.3 · 10−3.
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Example 3d: In our universe, the spherical cow is called
cosmological principle and is useful:
geographic symmetry breakings: well established
in the Cosmic Microwave Background (CMB), at ≈ 10−5;

geometric symmetry breakings, modelled by axial Bianchi I
universes,

dτ2 = dt2 − a(t)2 [dx2 + dy2] − c(t)2 dz2,

are signaled in CMB data by Cea [2014] at ≈ 10−10 (1σ),

and in the Lemaître-Hubble diagram (740 type 1a supernovae,
redshift z ≤ 1.3) by Tilquin, S. & Valent [2014] at ≈ 10−2 (1σ).
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Figure: Black points represent 740 supernova positions. Note the
accumulation of supernovae in the equatorial plane of the Earth and the
absence of supernovae in the galactic plane (blue line). The red star is
the direction towards our galactic center. Confidence level contours of
privileged directions in arbitrary color codes for axial Bianchi I universes;
best fit: ~uz .
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Again in 2014 Darling used tri-axial Bianchi I universes,

dτ2 = dt2 − a(t)2 dx2 − b(t)2 dy2 − c(t)2 dz2,

Lemaître [1933], to fit the drift of 429 extra-galactic radio sources.



surface of the Earth universe sym. break.

sphericity∗ cosmological principle
static and isolated Lemaître-Hubble flow

mountains over-densities geographic
continental drift,

variable duration of the day peculiar velocities geographic
constant rotation,
oblate ellipticity Bianchi I geometric

precession period = 26 ky position drift geometric

∗Flat-Earthers believe that sphericity is a conspiracy.
They must love flat universes too.



Future experimental tests

One year of Vera Rubin Observatory data should yield 50 000
supernovae (starting 2024 ?) and a precision better than

6 · 10−4 ?

Complementarily, the James Webb Space Telescope is expected
to observe some 200 type 1a supernovae up to redshift z = 6 in
the next six years.

The Chinese Space Station Telescope should start operating in
2024 and observe some 1800 type 1a supernovae below a redshift
of z = 1.3 in a time span of two years.

Exciting years ahead, inviting us to propose already now finer
mathematical models to be tested.
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A few mathematical facts on maximal symmetry
and its minimal breakings

Theorem: The isometry group of a d-dimensional space or
spacetime (with d ≥ 2) is a Lie group of dimension n ≤ d (d + 1)/2.

Examples in d = 2:
The sphere has the n = d (d + 1)/2 = 3 dimensional isometry
group O(3), it is “maximally symmetric”;
oblate and prolate axial ellipsoids (pumpkin and rugby ball) have
the n = 1 dimensional isometry group O(2);
generic ellipsoids have a discrete isometry group only, n = 0.

Theorem (Guido Fubini 1903): The isometry group of a
d-dimensional space, d ≥ 3, cannot be of dimension
n = d (d + 1)/2 − 1.

In d = 2 dimensions the cylinder is a counter example, because it
has two isometries.
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If we say: axial ellipsoids realize minimal symmetry breakings of
the sphere, we mean:

(1) These ellipsoids can be infinitesimally close to the sphere.
(2) They have the highest possible number of symmetries:

n = d (d + 1)/2 − 2 = 1.

Examples in d = 1 + 3:
In relativistic cosmology, we are tempted to start with a maximally
symmetric space-time: de Sitter spaces, Minkowski space or anti
de Sitter spaces. However none of them admits dynamics and we
must be more modest: d = 3.

The cosmological principle postulates maximally symmetric
spaces of simultaneity: 3-spheres, R3 and pseudo 3-spheres with
the n = 6 dimensional isometry groups: O(4), O(3) n R3, O(3, 1).

Adding time as an orthogonal R to these 3-spaces of simultaneity,
one obtains the ‘Robertson-Walker’ universes.
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Definition: A minimal symmetry breaking of the cosmological
principle is

(1) a smooth family of deformations of a
maximally symmetric 3-space,

(2) such that the isometry group of all deformations has
maximal dimension, n = 3 (3 + 1)/2 − 2 = 4 according
to Fubini.

Example: axial Bianchi I universes, 2 scale factors:

dτ2 = dt2 − a2 [dx2 + dy2] − c2 dz2,

3 translations + 1 rotation (around the z axis) = 4 symmetries.

Counter-example: tri-axial Bianchi I universes, 3 scalefactors:

dτ2 = dt2 − a2 dx2 − b2 dy2 − c2 dz2,

3 translations + no rotation = 3 symmetries.
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Three symmetries: Bianchi universes

There is only one 1-dimensional Lie algebra: the Abelian one.

There are two 2-dimensional Lie algebras: the Abelian one and the
(solvable) one of 2 × 2 triangular matrices with vanishing trace.

In 1898 Luigi Bianchi classifies all 3-dimensional, real Lie algebras.
His list starts with seven 3-dimensional Lie algebras: Bianchi I, II,
III, IV, V, VIII and IX.

Bianchi I is Abelian (3 translations),
Bianchi II is the Heisenberg algebra. Bianchi III is the direct sum of
the 1-dimensional and the solvable 2-dimensional Lie algebras.
Bianchi IX is so(3). In addition he finds two uncountable families
of 3-dimensional Lie algebras, each indexed by a real parameter h:
Bianchi VIh , h , 0, h , 1 and VIIh , h ≥ 0. (h , Planck’s constant!)

Bianchi also shows that all of these Lie algebras can be
represented as infinitesimal isometries (‘Killing vectors’) on
3-spaces. Adding time as an orthogonal R, one obtains the Bianchi
universes.
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Four symmetries: axial Bianchi universes

Bianchi classifies all 4-dimensional Lie algebras that occur as
infinitesimal isometries on 3-spaces.

He finds that all of these 4-dimensional Lie algebras contain
3-dimensional Lie sub-algebras. (Today we know that any real or
complex 4-dimensional Lie algebra has a 3-dimensional ideal.)
Therefore these 3-spaces give rise to universes, that are special
types of Bianchi universes. Let us call them ‘axial’ Bianchi
universes.
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Minimal symmetry breaking of
the cosmological principle

Which of the Bianchi universes qualify as minimal symmetry
breaking of the cosmological principle?

Condition (1) (‘Infinitesimally close to maximal symmetry’)

eliminates the Bianchi II, III, IV, VIh , and Bianchi VIII universes.

Condition (2) (‘Four symmetries’)

eliminates the axial Bianchi VIIh universes,
because they are isomorphic

to the axial Bianchi I universe for h = 0 and
to the axial Bianchi V universe for h , 0.

We remain with the axial Bianchi I, V and IX universes. They are
smooth deformations of the Robertson-Walker universes with zero,
negative and positive curvatures.
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In pictures

Robertson-Walker + CMB + ...

axial Bianchi I, V, IX + CMB + ...

Bianchi II, III, IV, VIh , VIII + CMB + ...
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In pictures

Robertson-Walker + CMB + ...

axial Bianchi I, V, IX + CMB + ...

Bianchi II, III, IV, VIh , VIII + CMB + ...



Axial Bianchi V universes with comoving dust
are incompatible with Einstein’s equations.

In

1967 Farnsworth

solved the Einstein equations for axial Bianchi
V universes with not necessarily comoving dust and finds that
none of his solutions supports comoving dust
(except the Friedman solution).

In 2022 Galliano solved the Einstein equations for not necessarily
axial Bianchi V universes with comoving dust and finds that none
of his solutions supports the axial symmetry
(except the Friedman solution).

In 2021 Akarsu, Di Valentino, Kumar, Ozyigit & Sharma considered
tri-axial Bianchi V universes with c2 = ab and comoving dust.
Galliano’s bonus: exact solution of Einstein’s equations. We also
prove that the isometry group is 3-dimensional
(except for a = b, the Friedman solution).
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Axial Bianchi IX universes with comoving dust

• Two scale factors: a(t) = b(t) and c(t)
that we linearize:

a = aF [1 − 1
2 η], c = aF [1 + η], |η(t)| � 1,

(·F for Friedman).

• Seven parameters (·0 for evaluation today = t0):
three for the underlying spherical Friedman universe

HF0, ΩΛ0, Ωm0,

two for the direction of the axial symmetry axis

(right ascension, declination),

and two for ‘ellipticity’ η0 and ‘Hubble stretch’ η′0, (′:= d/dt).

• Axial Bianchi I is the five-parameter sub-model with vanishing
curvature ΩΛ0 + Ωm0 = 1 and vanishing ellipticity η0 = 0.
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Consider a supernova of absolute luminosity L . It emits light at
cosmic time te . The light arrives today, t0, and here with a redshift
z, an apparent luminosity ` and at an angle θ with respect to the
axial symmetry axis.

From the kinematics we obtain:

z + 1 ∼
aF0

aFe

[
1 −

1 − 3 cos2 θ

2
(η0 − ηe)

]
, (0)

` ∼ `F

[
1 +

1 − 3 cos2 θ

2

(
η0 − 5ηe + 4

χ

tan χ
η̄

)]
, (1)

with ·e standing for evaluation at te and with

`F =
L

4π a2
F0 sin2 χ

(
aFe

aF0

)2

, χ :=

∫ t0

te

1
aF

, η̄ :=
1
χ

∫ t0

te

η

aF
.

In the limit of zero curvature, sin χ→ χ and χ/ tan χ→ 1 hold, and
we recover our 2014 results for axial Bianchi I.
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The dynamics is given by Einstein’s equations:

• aF (t) satisfies Friedman’s equations with final conditions:
aF (t0) = aF0 and a′F (t0) = aF0 HF0.

• η(t) satisfies

η′′ + 3 HF η
′ + 8

η

a2
F

∼ 0, (2)

which admits a unique solution with final conditons:
ellipticity η0 and Hubble stretch η′0.

In the limit of zero curvature, the last term of equation (2) vanishes,
and we recover our 2014 result for axial Bianchi I.

Finally the emission time te is eliminated in favour of the redshift by
inverting z(te), equation (0). Then the apparent luminosity is
computed and compared to the observed one and the seven initial
parameters are varied in order to optimize the fit for all observed
supernovae.
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Conclusions

In 2014 we confronted the 5-parameter axial Bianchi I with the 740
supernovae up to redshift 1.3 and found only a 1-σ signal.

Therefore we think that a fit of the 7-parameter axial Bianchi IX
model to the Lemaître-Hubble diagram of type 1a supernovae
becomes reasonable only once we can include the data expected
from the Vera Rubin Observatory, the James Webb Space
Telescope, the Chinese Space Station Telescope, ...

In the same year 2014 Cea fitted the axial Bianchi I model to the
WMAP and Planck data at redshift 1090. He also finds a 1-σ
signal. Although his Hubble stretch has opposite sign and is
smaller than ours by eight orders of magnitude, our results are
compatible with his.
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Again in 2014 Darling used the tri-axial Bianchi I model (7
parameters) to fit the drift of 429 extra-galactic radio sources
measured by Titov & Lambert in 2013 using Very Long Baseline
Interferometry. His main Hubble stretch has the same sign as ours
but is ten time larger and the results are again compatible
statistically.

•Waiting and preparing for the promised promising data of type 1a
supernovae, a combined analysis of axial Bianchi IX universes with
type 1a supernovae, Cosmic Microwave Background, drift of radio
sources and Baryonic Acoustic Oscillations (and maybe weak
lensing or black-hole mergers) is called for now.
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Traudi of Oberwolfach

To illustrate the cosmological principle here is a story set in the
Black Forest. Next to the Oberwolfach Research Institute for
Mathematics there is a farm, home to Traudi, her farmer’s preferred
cow. Traudi is ill and the veterinarian helpless. Sparing no effort,
the farmer calls on a physician, more expensive, but as helpless as
his colleague. The farmer has a nephew with a PhD in biology and
asks him to see Traudi, again without success. Finally, when he
sees a theoretical physicist on his way to a conference, the farmer,
driven to despair, asks him for help. The physicist sits down next to
Traudi, pulls out his note pad and starts calculating. During hours
the farmer watches the physicist’s intense concentration from a
respectful distance and feels a timid ripple of optimism. He pulls
closer, caresses Traudi between the horns and asks: ‘Is there any
hope?’ ‘Indeed there is’, replies the physicist with unconcealed
pride, ‘I just solved the case of the spherical cow.’


