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Accessing the partonic content of hadrons

with an electromagnetic probe

q2 = −Q2
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QCD at moderate xBj ∼ Q2/s

Bjorken limit: Q2 ∼ s
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QCD factorization
processes with a hard scale Q � ΛQCD

q

xP

P

F(x)

σ = F (x , µ)⊗H (x , µ)

At a scale µ, the process is factorized into:

A hard scattering subamplitude H(x , µ)

A Parton Distribution Function (PDF) F(x , µ)

µ independence: DGLAP renormalization equation for F

DDVCS from low to moderate x Bjorken and Regge limits GDR QCD 4



Bjorken and Regge limits Continuity of the phase space DIS beyond x = 0 DDVCS beyond x = 0 Conclusion

Transverse Momentum Dependent (TMD) factorization:
semi-inclusive processes with one hard and one semihard scale

Q ∼ √s � k⊥

q

xP + k⊥

P

F(x, k⊥)

k⊥

σ = F(x , k⊥, ζ, µ)⊗H (µ)⊗ F̂(x̂ , k̂⊥, ζ̂, µ)

At a scale µ, the process is factorized into:

A hard scattering subamplitude H(µ)

A TMD PDF F(x , k⊥, ζ, µ)

A TMD FF F̂(x̂ , k̂⊥, ζ̂, µ)

µ, ζ, ζ̂ independence: TMD evolution for F , F̂
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Factorization with Generalized Parton Distributions (GPD):
exclusive processes with one hard scale Q ∼ √s

q

x1P

P

F(x1, x2,∆)

P +∆

x2P

σ = F(x1, x2, |∆⊥|, µ)⊗H (x1, x2, µ)

At a scale µ, the process is factorized into:

A hard scattering subamplitude H(x1, x2, µ)

A Generalized Parton Distribution (GPD) F(x1, x2, |∆⊥|, µ)

µ independence: DGLAP/ERBL renormalization equation for F
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The family tree of parton distributions

Wigner distribution ↔ GTMD
W (x , k⊥, b⊥)↔ G(x , k⊥,∆⊥)

TMD
f (x , k⊥)

GPD
f (x ,∆⊥)

PDF
f (x)

Form factor
F (∆⊥)

Charge
Q

∫
d2b⊥

∫
d2k⊥

∫
d2k⊥ ∆⊥ = 0

∫
dx

∫
dx ∆⊥ = 0
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QCD at small xBj ∼ Q2/s

Regge limit: Q2 � s
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Rapidity separation

∼ p+n1

∼ p−n2

k+ < e−Y p+

k+ > e−Y p+

Let us split the gluonic field between ”fast” and ”slow” gluons

Aµa(k+, k−, k) = Aµa (|k+| > e−Y p+, k−, k)

+ Aµacl (|k+| < e−Y p+, k−, k)

e−Y � 1
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Large longitudinal boost to the projectile frame

∼ p+n1

∼ p−n2

∼ p+n1

∼ p−n2

A+
cl(x

+, x−, x)
1

Λ
A+

cl(Λx+,
x−

Λ
, x)

A−cl(x
+, x−, x) −→ ΛA−cl(Λx+,

x−

Λ
, x)

Ai
cl(x

+, x−, x) Λ ∼
√

s

m2
t

Ai
cl(Λx+,

x−

Λ
, x)

Aµcl(x)→ A−cl(x) nµ2 = δ(x+)A(x) nµ2 + O(

√
m2

t

s
)

Shock wave approximation
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Effective Feynman rules in the slow background field

Effective fermion propagator in the external classical field

∆x+ ∼ 0 ∆x+ ∼ 0∆x+ ∼ 0

Ai
cl = 0, A+

cl = 0: the Dirac structure factorizes

Acl does not depend on x−: conservation of + momentum

Acl is peaked around x+ = 0:

Most external propagators get factorized out

Gaussians ∼ δ functions: conservation of transverse position

Possibility to extend Wilson lines to infinity [x+, y+]x = [∞+,−∞+]x ≡ Ux
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Effective Feynman rules in the slow background field

The interactions with the background field can be exponentiated

∆x+ ∼ 0 ∆x+ ∼ 0∆x+ ∼ 0

DF (x2, x0)|x+
2 >0,x+

0 <0 =

∫
dDx1 δ(x+

1 )D0(x2, x1) γ+Ux1D0(x1, x0)

Each fast parton is dressed by an infinite Wilson line

Ux ≡ P exp

[
ig

∫ +∞

−∞
dx · Acl(x)

]
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Factorized picture

〈P | |P ′〉

z1

z2

Factorized amplitude

S =

∫
dx1dx2 ΦY (x1, x2 ) 〈P ′|[Tr(UY

x1
UY †

x2
)− Nc ]|P〉

Written similarly for any number of Wilson lines in any color representation!

Y independence: B-JIMWLK, BK equations. Resums logarithms of s
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The seemingly incompatible nature of the distributions

Two different kinds of gluon distributions

Moderate x distributions

TMD, PDF...

〈P |F−iWF−jW |P〉

Low x distributions

Dipole scattering amplitude

〈P |tr(U1U
†
2)|P〉
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The Wilson line ↔ parton distribution equivalence

Most general equivalence: use the Non-Abelian Stokes theorem

[RB, Mehtar-Tani]

ξ +∞

x1

x2

ξ +∞

z2

tn

z1

t2

t1

zn

C

S

→
F i−(tn, zn)

P exp

[∮
C
dxµA

µ(x)

]
= P exp

[∫
S
dσµν WFµνW †

]

Ux1⊥U
†
x2⊥ = [x̂1⊥, x̂2⊥]
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Inclusive low x cross section

Inclusive low x cross section = TMD cross section
[Altinoluk, RB, Kotko], [Altinoluk, RB]

Generalizes [Dominguez, Marquet, Xiao, Yuan]

k k

b b′

k1 k2 k

b1

b2

b′

k1 k2 k′
2k′

1

b1

b2

b′
1

b′
2

σ = Hij
2 (k) ⊗ f ij2 (x = 0, k)

+Hijk
3 (k , k1) ⊗ f ijk3 (x = 0, x1 = 0, k , k1)

+Hijkl
4

(
k , k1, k

′
1

)
⊗ f ijkl4 (x = 0, x1 = 0, x ′1 = 0, k , k1, k

′
1)

All distributions are evaluated in the strict x = 0 limit
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Exclusive low x cross section

Exclusive low x amplitude = GTMD amplitude
[Altinoluk, RB]

k1 k2

b1

b2

Hij (k1, k2) ⊗ f ij(x = 0, ξ = 0; k ,∆)

Every exclusive low x process probes
a Wigner distribution!

All distributions are evaluated in the strict x = 0 limit
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All distributions are evaluated in the strict x = 0 limit

[NNLO NNPDF3.0 global analysis, taken from PDG2018]

Instabilities in the collinear corner of the phase space
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All distributions are evaluated in the strict x = 0 limit

Hard part H and gluon distribution f for an inclusive
observable:

Bjorken limit

s ∼ Q2∫
dxf (x)H(x)

Leading twist of the CGC

s � Q2,Q2 →∞

f (0)
∫
dxH(x)

Strong mismatch beyond LL: the PDF is not a constant in
x ' 0.

Too late to restore a dependence on x via evolution: x is
already integrated over

DDVCS from low to moderate x Continuity of the phase space GDR QCD 19
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Summary so far

Distributions involved in pQCD observables

Overarching scheme?

f (x1...xn; k⊥1...k⊥n)

Bjorken limit

s ∼ Q2

f (x ; 0⊥) + O(Q−2)

Regge limit

s � Q2

f (0...0, k⊥1...k⊥n) + O(xBj)

Look for an interpolating scheme for simple observables

DDVCS from low to moderate x Continuity of the phase space GDR QCD 20



Bjorken and Regge limits Continuity of the phase space DIS beyond x = 0 DDVCS beyond x = 0 Conclusion

An interpolating scheme for inclusive DIS

q q

p p

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 21
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Bjorken limit

s ∼ Q2

f (x , k⊥ = 0) + O(Q−2)

Regge limit

s � Q2

f (x = 0, k⊥) + O(xBj)

Interpolation?

s & Q2

f (x , k⊥) + O(xBjQ
−2)

Basic observation: in both limits, k+ ' 0 for t-channel gluons

Factorization in k+ space is consistent
[Balitsky, Tarasov]

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 22
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit?

Aµ(x) = A−(x+, x−, x) nµ2 + Aµ⊥(x+, x−, x)

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 23
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit?

Aµ(x) = A−(x+, x−, x) nµ2 + Aµ⊥(x+, x−, x)

Dependence on x−: sub-sub-leading in twist counting

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 24
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit?

Aµ(x) = A−(x+, 0−, x) nµ2 + Aµ⊥(x+, 0−, x)

Non-zero A⊥: only two Ai contribute to DDVCS

They can be computed using Ward-Takahashi: only necessary
for consistency checks, can be dropped.

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 25
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit:

Aµ(x) = A−(x+, 0−, x) nµ2

.
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Effective Feynman rules in the slow background field

Effective fermion propagator in the external classical field

∆x+ ∼ 0 ∆x+ ∼ 0∆x+ ∼ 0

Ai
cl = 0, A+

cl = 0: the Dirac structure factorizes

Acl does not depend on x−: conservation of + momentum

Acl is peaked around x+ = 0:

Most external propagators get factorized out

Gaussians ∼ δ functions: conservation of transverse position

Possibility to extend Wilson lines to infinity [x+, y+]x = [∞+,−∞+]x ≡ Ux

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 27
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Effective Feynman rules in the slow background field

Effective fermion propagator in the external classical field

∆x+ 6= 0 ∆x+ 6= 0 ∆x+ 6= 0

Ai
cl = 0, A+

cl = 0: the Dirac structure factorizes

Acl does not depend on x−: conservation of + momentum

Acl is peaked around x+ = 0:

Most external propagators get factorized out

Gaussians ∼ δ functions: conservation of transverse position

Possibility to extend Wilson lines to infinity [x+, y+]x = [∞+,−∞+]x ≡ Ux
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Effective Feynman rules in the slow background field

Effective fermion propagator in the external classical field

∆x+ 6= 0 ∆x+ 6= 0 ∆x+ 6= 0

Ai
cl = 0, A+

cl = 0: the Dirac structure factorizes

Acl does not depend on x−: conservation of + momentum

DF (`′, `) = i
γ+

2`+
(2π)DδD(`′ − `) + i

/̀
′
γ+/̀

2`+
Gscal(`

′, `)
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Effective Feynman rules in the slow background field

Effective scalar propagator in the external classical field

=

�

+

k

2 g k+A−(x)

�′�

. . .

G

�′�

. . .

G

G scal(`
′, `)− G0(`′)(2π)DδD(`′ − `)

= 2g

∫
dDz

∫
dDk

(2π)D
ei(`
′−k)·zG0(`′) (k · A)(z)G scal(k, `).

In coordinate space, it satisfies the Klein-Gordon equation in a potential

[−�z + 2igA(z) · ∂z ]G scal(z , z0) = δD(z − z0)

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 30
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Computation

Application to DIS

q q

p p

A =
e2

µd−2
εµq ε

ν∗
q

∑
f

q2
f

∫
dD`

(2π)D

∫
dDk

(2π)D

× 〈p|tr [γνDF (`+ k, `)γµDF (−q + `,−q + `+ k)] |p〉

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 31
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(First) final result

Fully general result

A ∝ U ij(z , q, `1, `2)⊗z,`1,`2 (∂ iΦ)(z , `1)(∂jΦ∗)(z , `2)

Φ: standard wave functions

U ij : generalization of the dipole operator

Contains unnecessary subleading powers of xBj and Q

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 32
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Further simplifcations

Partial twist expansion

∆x2 ∼ xBj/Q
2

Typical transverse recoil of a fast parton:
∆x2 ∼ 1/(2q+P−) ∼ xBj/Q

2

xBj-suppressed in the Regge limit

1/Q2-suppressed in in the Bjorken limit.

We can get rid of all corrections from transverse
recoils without loss of accuracy

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 33
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Further simplifications

Partial twist expansion

〈p|U ij(z , q, `1, `2)|p〉
〈p|p〉 ' −i (2π)d

8zz̄(q+)2

∫
dx

G ij(x , `2 − `1)

x − xBj −
(

`1+`2
2

)2

2zz̄q+P− + i0

,

F i−(sv)

F j−(s′v)

(0+, 0)

(v+, v)

x-dependent unintegrated PDF

G ij(x , k) ≡ 1

P−

∫
dv+

2π
eixP
−v+

∫
dd

v

(2π)d
e−i(k·v)

∫ 1

0

dsds ′

×
〈
p
∣∣trc{[v+, 0+]

0
F i−(0+, sv

)[
0+, v+]

v
F j−(v+, s ′v

)}∣∣p〉
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The unintegrated PDF

uPDF as a finite Wilson loop

∫
d2

kei(k·r)
r
i
r
jG ij(x , ξ, k ,∆)

=
1

αs

∫
d4v1d

4v2

(2π)4
δ(v−1 )δ(v−2 )e−i(k−∆

2
)·v1+i(k+ ∆

2
)·v2

× ∂

∂v+
1

∂

∂v+
2

〈p|tr[v+
1 , v

+
2 ]v1 [v 1, v 2]v+

2
[v+

2 , v
+
1 ]v2 [v 2, v 1]v+

1
|p〉

〈p|p〉

∂
∂x+

∂
∂x+

k k

x-dependent unintegrated PDF ⇔ FT of a finite Wilson loop
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(Actual) final result

Final expression for the amplitude

ImA = g2
∑
f

q2
f

∫ 1

0

dz

2π

∫
dd`

(2π)d

∫
ddk

× (∂ iΦ)(z , `− k/2)(∂jΦ∗)(z , ` + k/2)

×
∫

dx G ij(x , k) δ

(
x − xBj

(
1 +

`2

zz̄Q2

))
Standard wave functions Φ

x-dependent unintegrated PDF G ij(x , k)
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Bjorken limit and Regge limit
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The Bjorken limit

Recovering the Bjorken limit

The Bjorken limit is reached by neglecting transverse momentum
transfert from the target:

|`| ∼ Q � |k |
Key observation: G ij integrates into PDFs∫

ddk(∂ iφ)(z , `− k/2)(∂jφ∗)(z , ` + k/2)G ij(x , k)

' (∂ iφ)(z , `)(∂jφ∗)(z , `)

∫
ddkG ij(x , k)

' (∂ iφ)(z , `)(∂jφ∗)(z , `)G ij(x)

We fully recover the well-known one-loop DIS cross
section

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 38
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The Regge limit

Recovering the Bjorken limit

The Regge limit is reached by neglecting xBj:

δ

[
x − xBj

(
1 +

`2

zz̄Q2

)]
' δ(x) 6= δ(x − xBj)

Key observation:∫
dd`1

(2π)d

∫
dd`2

(2π)d
e−i(`1·r1)+i(`2·r2)r i1r

j
2

[
xG ij(x , `2 − `1)

]
x=0

=
Nc

2π2αs
δd(r1 − r2)

∫
ddv2

(2π)d
Re

〈
P
∣∣1− 1

Nc
trc
(
Uv2+r1

U†v2

)∣∣P〉〈
P
∣∣P〉
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The Regge limit

Recovering the Regge limit

(∂iΦ)(z , `− k

2
)(∂jΦ∗)(z , ` +

k

2
)⊗`,k xG ij(x , k)δ(x)

→ Ψ(z , r1)Ψ∗(z , r2)⊗r1,r2 r
i
1r

j
2

[
xG ij(x , k)

]
x=0

→ Ψ(z , r1)Ψ∗(z , r2)⊗r1,r2 δ
d(r1 − r2)UU

→ |Ψ(z , r)|2 ⊗r D(r)

We fully recover the well-known small-xBj DIS structure
functions.
Rq: x = 0 is the reason why wave functions involve the same
dipole size in the wave functions
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Summary for the DIS case

Removing the light cone time scale separation
hypothesis
⇒ fully restored dependence on the x variable

However:
The x dependence for inclusive DIS is boringly trivial

Inclusive DIS only involves one longitudinal variable: x

What about an exclusive amplitude?

DDVCS from low to moderate x DIS beyond x = 0 GDR QCD 41
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An interpolating scheme for the
γ(∗)(q)P(p)→ γ(∗)(q′)P(p′) amplitude

q q′

p p′

DDVCS from low to moderate x The exclusive case GDR QCD 42
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Double, Spacelike, and Timelike exclusive Compton Scattering

q q′

p p′

Longitudinal momentum variables:

x , ξ ∼ −q2 + q′2

2q · (p + p′)
, xBj =

−q2 − q′2

2q · (p + p′)

Can we restore the dependence on all 3 variables in our CGC-like
scheme?

DDVCS from low to moderate x The exclusive case GDR QCD 43
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(Actual) final result

Final expression for the amplitude

A = g2
∑
f

q2
f

∫ 1

0

dz

2π

∫
dd`

(2π)d

∫
ddk

× (∂iΦ)(z , `− k/2)(∂jΦ∗)(z , ` + k/2)

×
∫

dx
G ij(x , ξ, k ,∆)

x − xBj − `2

2zz̄q+P− + i0

Standard wave functions Φ

(x , ξ)-dependent unintegrated GPD G ij(x , ξ, k ,∆)
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Bjorken limit, Regge limit and their

non-commutativity
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The Bjorken limit

Recovering the Bjorken limit

The Bjorken limit is reached by neglecting transverse momentum
transfert from the target:

|`| ∼ Q,Q ′ � |k |
Key observation: G ij integrates into GPDs∫

ddkG ij(x , ξ, k ,∆) = G ij(x , ξ,∆)

We fully recover the well-known one-loop exclusive
Compton scattering amplitudes
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The Regge limit

Recovering the Regge limit? What is x?

Naive argument

In the Regge limit, the amplitude is dominated by its imaginary
part

Leading order amplitude:

ImALO ∝ Im

∫
dxHq(x , ξ, t)

1

x − xBj + iε
= −πHq(xBj, ξ, t)

Hence take x = xBj

Problems

At NLO, the x cut is way more complicated

For DDVCS and for TCS, s-channel cuts also contribute to the
imaginary part
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The Bjorken limit

Recovering the Regge limit

The Regge limit is reached by neglecting xBj and setting
`2

zz̄ � q · P, then taking the x cut:

1

x − xBj − `2

2zz̄q+P− + i0
→ 1

x + i0
→ −iπδ(x),

then taking xBj, ξ � 1.
Rq: the x = 0 limit of the uGPD matches the dipole operator.

We recover the small x description of exclusive Compton
scattering see e.g. [Hatta, Xiao, Yuan]

Rq: x is strictly 0 in the uGPD
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Summary

Interpolating scheme for exclusive Compton scattering

Overarching scheme∫
dx
∫
ddkG ij(x , ξ, k ,∆)H ij(x , ξ, k ,∆)

Bjorken limit∫
dxH ij(x , ξ, 0,∆)

×[
∫
ddkG ij(x , ξ, k ,∆)]

Regge limit∫
ddkG ij(0, ξ, k ,∆)

×[
∫
dxH ij(x , ξ, k ,∆)]

We found an interpolating scheme
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Double limit

Do the two limits commute?

Leading twist limit of the Regge limit

lim
Q2+Q′2→∞

ARegge = g2
∑
f

q2
f

∫ 1

0

dz

2π

∫
dd`

(2π)d

× (−iπ)G ij(0, ξ, t)(∂ iΦ)(z , `)(∂jΦ∗)(z , `)

Eikonal limit of the Bjorken limit

lim
xBj,ξ→0

ABjorken = g2
∑
f

q2
f

∫ 1

0

dz

2π

∫
dd`

(2π)d

× lim
xBj,ξ→0

∫
dx

G ij(x , ξ, t)(∂ iΦ)(z , `)(∂jΦ∗)(z , `)

x − xBj − `2

2zz̄q+P− + i0
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Double limit

Do the two limits commute?

If G ij(x , ξ, t) is a constant at x = 0:∫
dx

G ij(x , ξ, t)(∂ iΦ)(z , `)(∂ jΦ∗)(z , `)

x − xBj − `2

2zz̄q+P− + i0

' G ij(0, ξ, t)

∫
dx

(∂ iΦ)(z , `)(∂ jΦ∗)(z , `)

x − xBj − `2

2zz̄q+P− + i0

= G ij(0, ξ, t)(∂ iΦ)(z , `)(∂ jΦ∗)(z , `)

× ln

 1− xBj − `2

zz̄ Q2+Q′2
2

ξ + i0

−1− xBj − `2

zz̄ Q2+Q′2
2

ξ + i0


and thus

lim
xBj,ξ→0

∫
dx

G ij(x , ξ, t)(∂ iΦ)(z , `)(∂ jΦ∗)(z , `)

x − xBj − `2

2zz̄q+P− + i0

' −iπG ij(0, ξ, t)(∂ iΦ)(z , `)(∂ jΦ∗)(z , `)
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Double limit

Do the two limits commute?

Leading twist limit of the Regge limit

lim
Q2+Q′2→∞

ARegge = g2
∑
f

q2
f

∫ 1

0

dz

2π

∫
dd`

(2π)d

× (−iπ)G ij(0, ξ, t)(∂ iΦ)(z , `)(∂jΦ∗)(z , `)

Eikonal limit of the Bjorken limit provided the GPDs are
constant at x = 0

lim
xBj,ξ→0

ABjorken = g2
∑
f

q2
f

∫ 1

0

dz

2π

∫
dd`

(2π)d

× (−iπ)G ij(0, ξ, t)(∂ iΦ)(z , `)(∂jΦ∗)(z , `)

Checked with explicit final expressions for both double limits
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Conclusion

Where do we stand?

Bad news

Semi-classical small x physics has, at its core, issues with
collinear logarithms

The problem can be traced down to the very starting point

Good news

We now have a minimal correction of semi-classical small
x which solves the problem from first principles

Wave functions, and thus hard parts, are not modified by
the scheme

All we need is the right evolution equation...
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The energy denominators

x1

y1 y2

x2x3 x1

y1 y2

x2x3

x1

y1 y2

x2 x1

y1 y2

x2

x4

y3

x4

y4

y4

y3

trGR
scal(x2, x1)GA

scal(y1, y2)

= 16g 2

∫
dDx3

∫
dDx4

∫
dDy3

∫
dDy4δ(y+

3 − x+
3 )δ(x+

4 − y+
4 )

× (∂+
x3
GR

0 )(x3, x1)(∂+
x4
GR

0 )(x2, x4)(∂+
y3
GA

0 )(y1, y3)(∂+
y4
GA

0 )(y4, y2)

× tr
{[

A−(y3)− A−(x3)
]
GA

scal(y3, y4)
[
A−(y4)− A−(x4)

]
GR

scal(x4, x3)
}
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The energy denominators

trGR
scal(x2, x1)GA

scal(y1, y2)

= 16g 2

∫
dDx3

∫
dDx4

∫
dDy3

∫
dDy4δ(y+

3 − x+
3 )δ(x+

4 − y+
4 )

× (∂+
x3
GR

0 )(x3, x1)(∂+
x4
GR

0 )(x2, x4)(∂+
y3
GA

0 )(y1, y3)(∂+
y4
GA

0 )(y4, y2)

× tr
{[

A−(y3)− A−(x3)
]
GA

scal(y3, y4)
[
A−(y4)− A−(x4)

]
GR

scal(x4, x3)
}

Can be proven via the repeated use of Klein-Gordon in a potential, or by
proving the generalization to Gscal of the relation

∂

∂x+
[ y+, x+]x1 [ x+, z+]x2 = −ig [ y+, x+]x1

[
A−(x+, x1)− A−(x+, x2)

]
[ x+, z+]x2

Structurally ready for a so-called dilute (perturbative) expansion

The free propagators G0 provide the energy denominators.
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Simplifications

Two useful technical details

The classical field does not depend on x− so Gscal(x , x0) only
depends on (x− − x−0 ), not on each separately: we can define

Gscal(x , x0) ≡
∫

dp+

2π

e−ip
+(x−−x−0 )

2ip+
(x |Gp+ (x+, x+

0 )|x0)

G satisfies the Schrödinger equation instead of Klein-Gordon

x1

y1

x+1

x1

y1

x+1

x1

y1

x+1

− = F i−

Since Ai = 0, we have

A−(x+, x)− A−(x+, y) = −(x i − y
i )

∫ 1

0

ds F i−(x+, sx + (1− s)y)
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Further simplifcations

Partial twist expansion

x1

x2

x+1 x+2

X = x1+x2
2

(x1|GRp+(x+
1 , x

+
2 )|x2) ' θ(p+) (x1|G(0)R

p+ (x+
1 , x

+
2 )|x2)

[
x+

1 , x
+
2

]
x1+x2

2

(y2|GAp+(x+
2 , x

+
1 )|y1) ' θ(−p+) (y2|G(0)A

p+ (x+
2 , x

+
1 )|y1)

[
x+

2 , x
+
1

]
y1+y2

2

[Altinoluk, Armesto, Beuf, Martinez, Salgado]

F i−(x+
1 , sx1 + s̄y1) ' F i−

(
x+

1 , s
x1 + x2

2
+ s̄

y1 + y2

2

)
DDVCS from low to moderate x GDR QCD 58



The double log limit

What about the overlapping limit?

Illustration: collinearly divergent contributions

Leading twist limit of the Regge limit

lim
Q2→∞

FT (xBj → 0,Q2)

∣∣∣∣
div

∝ 1

ε
[xg(x)]x=0

∫ 1

0
dyPqg (y)

Eikonal limit of the Bjorken limit

lim
xBj→0

FT (xBj,Q
2 →∞)

∣∣∣∣
div

∝ 1

ε
lim

xBj→0

∫ 1

xBj

dy [xg(x)]x=xBj/y
Pqg (y)
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The double log limit

What about the overlapping limit?

lim
Q2→∞

FT (xBj → 0,Q2)

∣∣∣∣
div

=? lim
xBj→0

FT (xBj,Q
2 →∞)

∣∣∣∣
div

The two limits commute, and the collinear divergence of the
Regge limit can be canceled using DGLAP if and only if

lim
xBj→0

∫ 1

xBj

dy [xg(x)]x=xBj/y
Pqg (y) = [xg(x)]x=0

∫ 1

0
dyPqg (y)
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The double log limit

What about the overlapping limit?

lim
xBj→0

∫ 1

xBj

dy [xg(x)]x=xBj/y
Pqg (y) =? [xg(x)]x=0

∫ 1

0
dyPqg (y)

This equation is only correct provided that:

The PDF is constant at x = 0 (arguably false)

The splitting function is integrable on {0, 1}
↪→ True for Pqg , false for Pgg

In the Regge limit, Pqg appears at LL and Pgg at NLL.
This is why the issue was only noticed at NLL.

However, the issue was here at LL all along and its origin is the
fact that x is 0, which traces back to the shock wave approximation
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