Low vs moderate x_{Bi} matching: how x is strictly 0 and what we can do about it

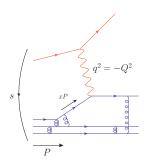
Renaud Boussarie

Saturation at the FIC

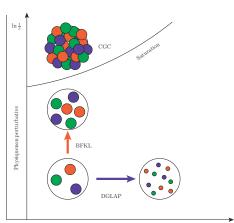
In collaboration with Y. Mehtar-Tani

DDVCS from low to moderate x

Accessing the partonic content of hadrons with an electromagnetic probe



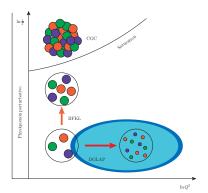
Electron-proton collision (parton model)



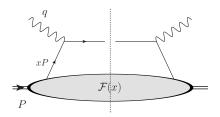
Bjorken and Regge limits

QCD at moderate $x_{\rm Bj} \sim Q^2/s$

Bjorken limit: $Q^2 \sim s$



QCD factorization processes with a hard scale $Q \gg \Lambda_{QCD}$



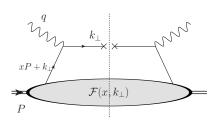
$$\sigma = \mathcal{F}(\mathbf{x}, \mu) \otimes \mathcal{H}(\mathbf{x}, \mu)$$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(x,\mu)$
- A Parton Distribution Function (PDF) $\mathcal{F}(x,\mu)$

 μ independence: DGLAP renormalization equation for \mathcal{F}

Transverse Momentum Dependent (TMD) factorization: semi-inclusive processes with one hard and one semihard scale $Q \sim \sqrt{s} \gg k_{\perp}$

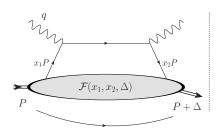


$$\sigma = \mathcal{F}(\mathbf{x}, \mathbf{k}_{\perp}, \zeta, \mu) \otimes \mathcal{H}(\mu) \otimes \hat{\mathcal{F}}(\hat{\mathbf{x}}, \hat{\mathbf{k}}_{\perp}, \hat{\zeta}, \mu)$$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(\mu)$
- A TMD PDF $\mathcal{F}(x, k_{\perp}, \zeta, \mu)$
- A TMD FF $\hat{\mathcal{F}}(\hat{x}, \hat{k}_{\perp}, \hat{\zeta}, \mu)$

 $\mu, \zeta, \hat{\zeta}$ independence: TMD evolution for $\mathcal{F}, \hat{\mathcal{F}}$



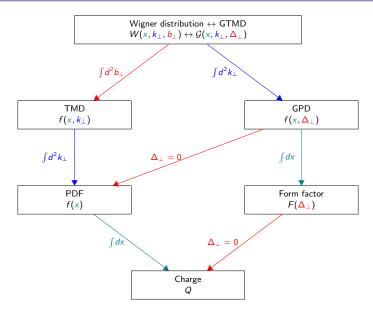
$$\sigma = \mathcal{F}(\mathbf{x}_1, \mathbf{x}_2, |\Delta_{\perp}|, \mu) \otimes \mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \mu)$$

At a scale μ , the process is factorized into:

- A hard scattering subamplitude $\mathcal{H}(x_1, x_2, \mu)$
- A Generalized Parton Distribution (GPD) $\mathcal{F}(x_1, x_2, |\Delta_{\perp}|, \mu)$

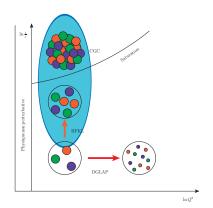
 μ independence: DGLAP/ERBL renormalization equation for \mathcal{F}

The family tree of parton distributions



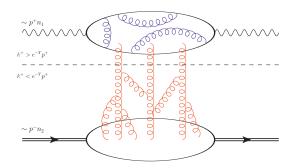
Bjorken and Regge limits

Regge limit: $Q^2 \ll s$



Rapidity separation

Bjorken and Regge limits

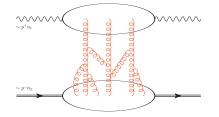


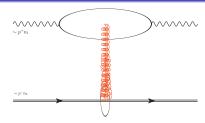
Let us split the gluonic field between "fast" and "slow" gluons

$$\mathcal{A}^{\mu a}(k^{+}, k^{-}, k) = A^{\mu a}(|k^{+}| > e^{-Y}p^{+}, k^{-}, k) + A^{\mu a}_{cl}(|k^{+}| < e^{-Y}p^{+}, k^{-}, k)$$

$$e^{-Y} \ll 1$$

Large longitudinal boost to the projectile frame





$$A_{\mathrm{cl}}^{+}(x^{+},x^{-},x)$$

$$A_{\mathrm{cl}}^{-}(x^{+},x^{-},x)$$

$$\frac{1}{\Lambda}A_{\rm cl}^+(\Lambda x^+,\frac{x^-}{\Lambda},x)$$

$$\Lambda A_{\rm cl}^-(\Lambda x^+, \frac{x^-}{\Lambda}, x)$$

$$A_{\mathrm{cl}}^{i}(x^{+},x^{-},x)$$

$$\Lambda \sim \sqrt{rac{s}{m_t^2}}$$

$$A_{\rm cl}^i(\Lambda x^+, \frac{x^-}{\Lambda}, x)$$

$$A_{\rm cl}^{\mu}(x) o A_{\rm cl}^{-}(x) \, n_2^{\mu} = \delta(x^+) \, {\bf A}(x) \, n_2^{\mu} + O(\sqrt{m_{\rm t}^2 \over s})$$

Shock wave approximation

Effective Feynman rules in the slow background field

- $A_{cl}^i = 0$, $A_{cl}^+ = 0$: the Dirac structure factorizes
- A_{cl} does not depend on x^- : conservation of + momentum
- $A_{\rm cl}$ is peaked around $x^+ = 0$:
 - Most external propagators get factorized out
 - ullet Gaussians $\sim \delta$ functions: conservation of transverse position
 - Possibility to extend Wilson lines to infinity $[x^+, y^+]_x = [\infty^+, -\infty^+]_x \equiv U_x$

Effective Feynman rules in the slow background field

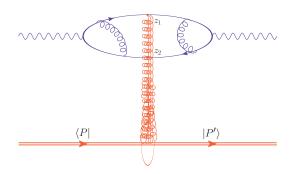
The interactions with the background field can be exponentiated

$$D_F(x_2, x_0)|_{x_2^+ > 0, x_0^+ < 0} = \int d^D x_1 \, \delta(x_1^+) \, D_0(x_2, x_1) \, \gamma^+ \, U_{x_1} D_0(x_1, x_0)$$

Each fast parton is dressed by an infinite Wilson line

$$U_x \equiv \mathcal{P} \exp \left[ig \int_{-\infty}^{+\infty} \mathrm{d}x \cdot A_{\mathrm{cl}}(x) \right]$$

Factorized picture



Factorized amplitude

$$\mathcal{S} = \int \mathrm{d}x_1 \mathrm{d}x_2 \, \Phi^Y(x_1, x_2) \, \langle P' | [\mathrm{Tr}(U_{x_1}^Y U_{x_2}^{Y\dagger}) - N_c] | P \rangle$$

Written similarly for any number of Wilson lines in any color representation!

Y independence: B-JIMWLK, BK equations. Resums logarithms of s

Two different kinds of gluon distributions

Moderate x distributions

Low x distributions

TMD, PDF...

Bjorken and Regge limits

Dipole scattering amplitude

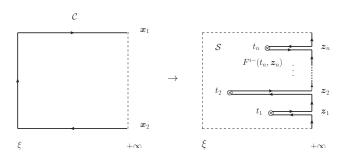
$$\langle P|F^{-i}WF^{-j}W|P\rangle$$

$$\langle P | \operatorname{tr}(U_1 U_2^{\dagger}) | P \rangle$$

The Wilson line \leftrightarrow parton distribution equivalence

Most general equivalence: use the Non-Abelian Stokes theorem

[RB, Mehtar-Tani]



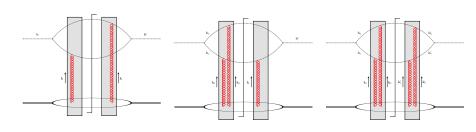
$$\mathcal{P} \exp \left[\oint_{\mathcal{C}} dx_{\mu} A^{\mu}(x) \right] = \mathcal{P} \exp \left[\int_{\mathcal{S}} d\sigma_{\mu\nu} \ WF^{\mu\nu} W^{\dagger} \right]$$

$$U_{x_{1}\perp}U_{x_{2}\perp}^{\dagger}=[\hat{x}_{1\perp},\hat{x}_{2\perp}]$$

Inclusive low x cross section = TMD cross section

[Altinoluk, RB, Kotko], [Altinoluk, RB]

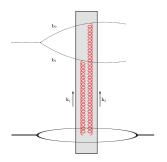
Generalizes [Dominguez, Marquet, Xiao, Yuan]



$$\sigma = \mathcal{H}_{2}^{ij}(\mathbf{k}) \otimes f_{2}^{ij}(\mathbf{x} = 0, \mathbf{k})
+ \mathcal{H}_{3}^{ijk}(\mathbf{k}, \mathbf{k}_{1}) \otimes f_{3}^{ijk}(\mathbf{x} = 0, \mathbf{x}_{1} = 0, \mathbf{k}, \mathbf{k}_{1})
+ \mathcal{H}_{4}^{ijkl}(\mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{1}') \otimes f_{4}^{ijkl}(\mathbf{x} = 0, \mathbf{x}_{1} = 0, \mathbf{x}_{1}' = 0, \mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{1}')$$

All distributions are evaluated in the strict x = 0 limit

Exclusive low x amplitude = GTMD amplitude [Altinoluk, RB]

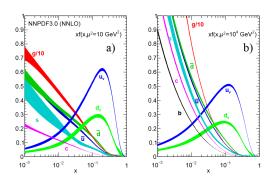


$$\mathcal{H}^{ij}(\mathbf{k}_1,\mathbf{k}_2)\otimes f^{ij}(x=0,\xi=0;\mathbf{k},\Delta)$$

Every exclusive low x process probes a Wigner distribution!

All distributions are evaluated in the strict x = 0 limit

All distributions are evaluated in the strict x = 0 limit



[NNLO NNPDF3.0 global analysis, taken from PDG2018]

Instabilities in the collinear corner of the phase space

Hard part \mathcal{H} and gluon distribution f for an inclusive observable:

Bjorken limit Leading twist of the CGC
$$s \sim Q^2$$
 $s \gg Q^2, Q^2 \to \infty$
$$\int \mathrm{d}x f(x) \mathcal{H}(x) \qquad \qquad f(0) \int \mathrm{d}x \mathcal{H}(x)$$

Strong mismatch beyond LL: the PDF is not a constant in $x \simeq 0$.

Too late to restore a dependence on x via evolution: x is already integrated over

Distributions involved in pQCD observables

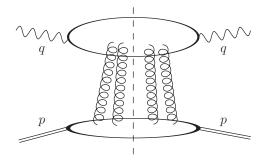
Overarching scheme?

$$f(\mathbf{x}_1...\mathbf{x}_n; \mathbf{k}_{\perp 1}...\mathbf{k}_{\perp n})$$

Bjorken limit Regge limit
$$s \sim Q^2$$
 $s \gg Q^2$ $f(x;0_{\perp}) + O(Q^{-2})$ $f(0...0, k_{\perp 1}...k_{\perp n}) + O(x_{\rm Bj})$

Look for an interpolating scheme for simple observables

An interpolating scheme for inclusive DIS



Biorken limit

Bjorken and Regge limits

$$s \sim Q^2$$

$$f(\mathbf{x}, \mathbf{k}_{\perp} = \mathbf{0}) + O(Q^{-2})$$

Regge limit

$$s\gg Q^2$$

$$f(\mathbf{x}=\mathbf{0},\mathbf{k}_{\perp})+O(\mathbf{x}_{\mathrm{Bj}})$$

Interpolation?

DIS beyond x = 0

$$s \gtrsim Q^2$$

$$f(\mathbf{x}, \mathbf{k}_{\perp}) + O(x_{\mathrm{Bj}}Q^{-2})$$

Basic observation: in both limits, $k^+ \simeq 0$ for t-channel gluons

Factorization in k^+ space is consistent [Balitsky, Tarasov]

Still factorizing gluons depending on k^+ in $A^+ = 0$ gauge

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit?

$$A^{\mu}(x) = A^{-}(x^{+}, x^{-}, x) n_{2}^{\mu} + A^{\mu}_{\perp}(x^{+}, x^{-}, x)$$

Building a semi-classical picture

Still factorizing gluons depending on k^+ in $A^+=0$ gauge

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit?

$$A^{\mu}(x) = A^{-}(x^{+}, \mathbf{x}^{-}, x) n_{2}^{\mu} + A_{\perp}^{\mu}(x^{+}, \mathbf{x}^{-}, x)$$

Dependence on x^- : sub-sub-leading in twist counting

Building a semi-classical picture

Still factorizing gluons depending on k^+ in $A^+ = 0$ gauge

Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit?

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x) n_{2}^{\mu} + A^{\mu}_{\perp}(x^{+}, 0^{-}, x)$$

Non-zero A_{\perp} : only two A^{i} contribute to DDVCS

They can be computed using Ward-Takahashi: only necessary for consistency checks, can be dropped.

Building a semi-classical picture

Still factorizing gluons depending on k^+ in $A^+=0$ gauge

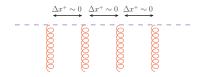
Necessary gluon fields in the Regge limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x)n_{2}^{\mu}$$

Necessary gluon fields in the Bjorken limit:

$$A^{\mu}(x) = A^{-}(x^{+}, 0^{-}, x) n_{2}^{\mu}$$

Effective Feynman rules in the slow background field



- $A_{cl}^i = 0$, $A_{cl}^+ = 0$: the Dirac structure factorizes
- A_{cl} does not depend on x^- : conservation of + momentum
- A_{cl} is peaked around $x^+ = 0$:
 - Most external propagators get factorized out
 - Gaussians $\sim \delta$ functions: conservation of transverse position
 - Possibility to extend Wilson lines to infinity $[x^+, y^+]_x = [\infty^+, -\infty^+]_x \equiv U_x$

- $A_{c1}^i = 0$, $A_{c1}^+ = 0$: the Dirac structure factorizes
- A_{cl} does not depend on x^- : conservation of + momentum
- A_{c1} is peaked around $x^+ = 0$:
 - Most external propagators get factorized out
 - Gaussians $\sim \delta$ functions: conservation of transverse position
 - \bullet Possibility to extend Wilson lines to infinity $[x^+,y^+]_x=[\infty^+,-\infty^+]_x\equiv U_x$

Effective Feynman rules in the slow background field

$$\begin{array}{c} \Delta x^{+} \neq 0 \ \Delta x^{+} \neq 0 \ \Delta x^{+} \neq 0 \\ \hline \\ 0 \ 0 \ 0 \ 0 \ 0 \\ \hline \\ 0 \ 0 \ 0 \ 0 \\ \hline \end{array}$$

- $A_{cl}^i = 0$, $A_{cl}^+ = 0$: the Dirac structure factorizes
- A_{cl} does not depend on x^- : conservation of + momentum

$$D_F(\ell',\ell) = i \frac{\gamma^+}{2\ell^+} (2\pi)^D \delta^D(\ell'-\ell) + i \frac{\ell' \gamma^+ \ell}{2\ell^+} G_{\rm scal}(\ell',\ell)$$

Effective Feynman rules in the slow background field

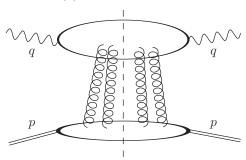
Effective scalar propagator in the external classical field

$$\begin{split} &G_{\mathrm{scal}}(\ell',\ell) - G_0(\ell')(2\pi)^D \delta^D(\ell'-\ell) \\ &= 2g \int \mathrm{d}^D z \int \frac{\mathrm{d}^D k}{(2\pi)^D} \mathrm{e}^{\mathrm{i}(\ell'-k)\cdot z} G_0(\ell') \left(k\cdot A\right)\!(z) \, G_{\mathrm{scal}}(k,\ell). \end{split}$$

In coordinate space, it satisfies the Klein-Gordon equation in a potential

$$[-\Box_z + 2igA(z) \cdot \partial_z] G_{\rm scal}(z, z_0) = \delta^D(z - z_0)$$

Application to DIS



$$\begin{split} \mathcal{A} &= \frac{e^2}{\mu^{d-2}} \varepsilon_q^{\mu} \varepsilon_q^{\nu*} \sum_f q_f^2 \int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \int \frac{\mathrm{d}^D k}{(2\pi)^D} \\ &\times \langle p | \mathrm{tr} \left[\gamma_{\nu} D_F (\ell + k, \ell) \gamma_{\mu} D_F (-q + \ell, -q + \ell + k) \right] | p \rangle \end{split}$$

Fully general result

$$\mathcal{A} \propto \mathcal{U}^{ij}(z,q,\boldsymbol{\ell}_1,\boldsymbol{\ell}_2) \otimes_{z,\boldsymbol{\ell}_1,\boldsymbol{\ell}_2} (\partial^i \Phi)(z,\boldsymbol{\ell}_1)(\partial^j \Phi^*)(z,\boldsymbol{\ell}_2)$$

- Φ: standard wave functions
- ullet \mathcal{U}^{ij} : generalization of the dipole operator

Contains unnecessary subleading powers of $x_{\rm Bj}$ and Q

Partial twist expansion

Typical transverse recoil of a fast parton:

$$\Delta x^2 \sim 1/(2q^+P^-) \sim x_{\mathrm{Bj}}/Q^2$$

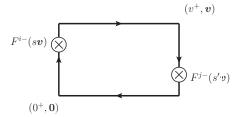
 x_{Bi} -suppressed in the Regge limit

 $1/Q^2$ -suppressed in in the Bjorken limit.

We can get rid of all corrections from transverse recoils without loss of accuracy

Partial twist expansion

$$\frac{\langle \rho | \mathcal{U}^{ij}(z,q,\boldsymbol{\ell}_1,\boldsymbol{\ell}_2) | \rho \rangle}{\langle \rho | \rho \rangle} \simeq -i \frac{(2\pi)^d}{8z\overline{z}(q^+)^2} \int \mathrm{d}x \frac{\underline{\mathcal{G}^{ij}}(x,\boldsymbol{\ell}_2-\boldsymbol{\ell}_1)}{x-x_{\mathrm{Bj}} - \frac{\left(\frac{\boldsymbol{\ell}_1+\boldsymbol{\ell}_2}{2}\right)^2}{2z\overline{z}q^+P^-} + i0},$$



x-dependent unintegrated PDF

$$\begin{split} \mathcal{G}^{ij}(x, \boldsymbol{k}) &\equiv \frac{1}{P^{-}} \int \frac{\mathrm{d}v^{+}}{2\pi} \mathrm{e}^{ixP^{-}v^{+}} \int \frac{\mathrm{d}^{d}\boldsymbol{v}}{(2\pi)^{d}} \mathrm{e}^{-i(\boldsymbol{k}\cdot\boldsymbol{v})} \int_{0}^{1} \mathrm{d}s \mathrm{d}s' \\ &\times \left\langle \boldsymbol{p} \middle| \mathrm{tr}_{c} \left\{ \left[\boldsymbol{v}^{+}, \boldsymbol{0}^{+} \right]_{0} \boldsymbol{F}^{i-} \left(\boldsymbol{0}^{+}, s\boldsymbol{v} \right) \right\} \middle| \boldsymbol{p} \right\rangle \end{split}$$

The unintegrated PDF

uPDF as a finite Wilson loop

$$\int d^{2}\boldsymbol{k} e^{i(\boldsymbol{k}\cdot\boldsymbol{r})} \boldsymbol{r}^{i} \boldsymbol{r}^{j} \mathcal{G}^{ij}(\boldsymbol{x}, \boldsymbol{\xi}, \boldsymbol{k}, \boldsymbol{\Delta})$$

$$= \frac{1}{\alpha_{s}} \int \frac{d^{4}\boldsymbol{v}_{1} d^{4}\boldsymbol{v}_{2}}{(2\pi)^{4}} \delta(\boldsymbol{v}_{1}^{-}) \delta(\boldsymbol{v}_{2}^{-}) e^{-i(\boldsymbol{k}-\frac{\Delta}{2})\cdot\boldsymbol{v}_{1}+i(\boldsymbol{k}+\frac{\Delta}{2})\cdot\boldsymbol{v}_{2}}$$

$$\times \frac{\partial}{\partial \boldsymbol{v}_{1}^{+}} \frac{\partial}{\partial \boldsymbol{v}_{2}^{+}} \frac{\langle \boldsymbol{p}| \mathrm{tr}[\boldsymbol{v}_{1}^{+}, \boldsymbol{v}_{2}^{+}]_{\boldsymbol{v}_{1}}[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}]_{\boldsymbol{v}_{2}^{+}}[\boldsymbol{v}_{2}^{+}, \boldsymbol{v}_{1}^{+}]_{\boldsymbol{v}_{2}}[\boldsymbol{v}_{2}, \boldsymbol{v}_{1}]_{\boldsymbol{v}_{1}^{+}}|\boldsymbol{p}\rangle}{\langle \boldsymbol{p}|\boldsymbol{p}\rangle}$$

x-dependent unintegrated PDF \Leftrightarrow FT of a finite Wilson loop

Bjorken and Regge limits

Final expression for the amplitude

$$\operatorname{Im} \mathcal{A} = g^{2} \sum_{f} q_{f}^{2} \int_{0}^{1} \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^{d}\ell}{(2\pi)^{d}} \int \mathrm{d}^{d}\mathbf{k}$$

$$\times (\partial^{i}\Phi)(z, \ell - \mathbf{k}/2)(\partial^{j}\Phi^{*})(z, \ell + \mathbf{k}/2)$$

$$\times \int \mathrm{d}x \, \mathcal{G}^{ij}(x, \mathbf{k}) \, \delta\left(x - x_{\mathrm{Bj}}\left(1 + \frac{\ell^{2}}{z\bar{z}Q^{2}}\right)\right)$$

Standard wave functions Φ

x-dependent unintegrated PDF $\mathcal{G}^{ij}(x, \mathbf{k})$

Bjorken limit and Regge limit

The Bjorken limit

Recovering the Bjorken limit

The Bjorken limit is reached by neglecting transverse momentum transfert from the target:

$$|\boldsymbol{\ell}| \sim Q \gg |\boldsymbol{k}|$$

Key observation: \mathcal{G}^{ij} integrates into PDFs

$$\int d^{d} \mathbf{k} (\partial^{i} \phi)(z, \mathbf{\ell} - \mathbf{k}/2)(\partial^{j} \phi^{*})(z, \mathbf{\ell} + \mathbf{k}/2)\mathcal{G}^{ij}(x, \mathbf{k})$$

$$\simeq (\partial^{i} \phi)(z, \mathbf{\ell})(\partial^{j} \phi^{*})(z, \mathbf{\ell}) \int d^{d} \mathbf{k} \mathcal{G}^{ij}(x, \mathbf{k})$$

$$\simeq (\partial^{i} \phi)(z, \mathbf{\ell})(\partial^{j} \phi^{*})(z, \mathbf{\ell})\mathcal{G}^{ij}(x)$$

We fully recover the well-known one-loop DIS cross section

Recovering the Bjorken limit

The Regge limit is reached by neglecting x_{Bj} :

$$\delta \left[x - x_{\mathrm{Bj}} \left(1 + \frac{\ell^2}{z \bar{z} Q^2} \right) \right] \simeq \delta(x) \neq \delta(x - x_{\mathrm{Bj}})$$

Key observation:

$$\begin{split} &\int \frac{\mathrm{d}^{d}\boldsymbol{\ell}_{1}}{(2\pi)^{d}} \int \frac{\mathrm{d}^{d}\boldsymbol{\ell}_{2}}{(2\pi)^{d}} \mathrm{e}^{-i(\boldsymbol{\ell}_{1}\cdot\boldsymbol{r}_{1})+i(\boldsymbol{\ell}_{2}\cdot\boldsymbol{r}_{2})} \boldsymbol{r}_{1}^{i}\boldsymbol{r}_{2}^{j} \big[\boldsymbol{x}\boldsymbol{G}^{ij}(\boldsymbol{x},\boldsymbol{\ell}_{2}-\boldsymbol{\ell}_{1}) \big]_{\boldsymbol{x}=\boldsymbol{0}} \\ &= \frac{N_{c}}{2\pi^{2}\alpha_{s}} \delta^{d}(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}) \int \frac{\mathrm{d}^{d}\boldsymbol{v}_{2}}{(2\pi)^{d}} \mathrm{Re} \frac{\left\langle P \middle| 1 - \frac{1}{N_{c}} \mathrm{tr}_{c} \left(\boldsymbol{U}_{\boldsymbol{v}_{2}+\boldsymbol{r}_{1}} \boldsymbol{U}_{\boldsymbol{v}_{2}}^{\dagger}\right) \middle| P \right\rangle}{\left\langle P \middle| P \right\rangle} \end{split}$$

Bjorken and Regge limits

Recovering the Regge limit

$$(\partial^{j}\Phi)(z,\ell-\frac{\mathbf{k}}{2})(\partial^{j}\Phi^{*})(z,\ell+\frac{\mathbf{k}}{2})\otimes_{\ell,\mathbf{k}} \times G^{ij}(x,\mathbf{k})\delta(x)$$

$$\rightarrow \Psi(z,\mathbf{r}_{1})\Psi^{*}(z,\mathbf{r}_{2})\otimes_{\mathbf{r}_{1},\mathbf{r}_{2}} \mathbf{r}_{1}^{i}\mathbf{r}_{2}^{j}\left[\times G^{ij}(x,\mathbf{k})\right]_{x=0}$$

$$\rightarrow \Psi(z,\mathbf{r}_{1})\Psi^{*}(z,\mathbf{r}_{2})\otimes_{\mathbf{r}_{1},\mathbf{r}_{2}} \delta^{d}(\mathbf{r}_{1}-\mathbf{r}_{2})UU$$

$$\rightarrow |\Psi(z,\mathbf{r})|^{2}\otimes_{\mathbf{r}} D(\mathbf{r})$$

We fully recover the well-known small- $x_{\rm Bj}$ DIS structure functions.

Rq: x = 0 is the reason why wave functions involve the same dipole size in the wave functions

Summary for the DIS case

Bjorken and Regge limits

Removing the light cone time scale separation hypothesis

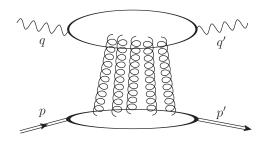
 \Rightarrow fully restored dependence on the x variable

However:

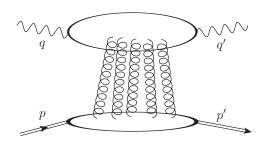
- The x dependence for inclusive DIS is boringly trivial
- Inclusive DIS only involves one longitudinal variable: x

What about an exclusive amplitude?

An interpolating scheme for the $\gamma^{(*)}(q)P(p) \rightarrow \gamma^{(*)}(q')P(p')$ amplitude



Double, Spacelike, and Timelike exclusive Compton Scattering



Longitudinal momentum variables:

$$\mathbf{x}, \quad \mathbf{\xi} \sim \frac{-q^2 + q'^2}{2q \cdot (p + p')}, \quad \mathbf{x}_{\mathbf{Bj}} = \frac{-q^2 - q'^2}{2q \cdot (p + p')}$$

Can we restore the dependence on all 3 variables in our CGC-like scheme?

Bjorken and Regge limits

Final expression for the amplitude

$$\mathcal{A} = g^{2} \sum_{f} q_{f}^{2} \int_{0}^{1} \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^{d}\ell}{(2\pi)^{d}} \int \mathrm{d}^{d}\mathbf{k}$$

$$\times (\partial^{i}\Phi)(z, \ell - \mathbf{k}/2)(\partial^{j}\Phi^{*})(z, \ell + \mathbf{k}/2)$$

$$\times \int \mathrm{d}x \frac{\mathcal{G}^{ij}(x, \xi, \mathbf{k}, \Delta)}{x - x_{\mathrm{Bj}} - \frac{\ell^{2}}{2z\overline{z}q^{+}P^{-}} + i0}$$

Standard wave functions Φ

 (x,ξ) -dependent unintegrated GPD $\mathcal{G}^{ij}(x,\xi,\boldsymbol{k},\Delta)$

Bjorken limit, Regge limit and their non-commutativity

00000000000

The Bjorken limit

Recovering the Bjorken limit

The Bjorken limit is reached by neglecting transverse momentum transfert from the target:

$$|\boldsymbol{\ell}| \sim Q, Q' \gg |\boldsymbol{k}|$$

Key observation: \mathcal{G}^{ij} integrates into GPDs

$$\int \mathrm{d}^{d} \boldsymbol{k} \mathcal{G}^{ij}(x,\xi,\boldsymbol{k},\Delta) = G^{ij}(x,\xi,\Delta)$$

We fully recover the well-known one-loop exclusive **Compton scattering amplitudes**

Recovering the Regge limit? What is x?

Naive argument

- In the Regge limit, the amplitude is dominated by its imaginary part
- Leading order amplitude:

$$\mathrm{Im}\mathcal{A}_{LO}\propto\mathrm{Im}\int\mathrm{d}xH^q(x,\xi,t)\frac{1}{x-x_{\mathrm{Bj}}+i\epsilon}=-\pi H^q(x_{\mathrm{Bj}},\xi,t)$$

• Hence take $x = x_{Bj}$

Problems

- At NLO, the x cut is way more complicated
- For DDVCS and for TCS, s-channel cuts also contribute to the imaginary part

Recovering the Regge limit

The Regge limit is reached by neglecting $x_{\rm Bj}$ and setting $\frac{\ell^2}{z\bar z} \ll q \cdot P$, then taking the x cut:

$$\frac{1}{x-x_{\rm Bj}-\frac{\ell^2}{2z\bar{z}q^+P^-}+i0}\rightarrow \frac{1}{x+i0}\rightarrow -i\pi\delta(x),$$

then taking $x_{\rm Bj}, \xi \ll 1$.

Rq: the x = 0 limit of the uGPD matches the dipole operator.

We recover the small x description of exclusive Compton scattering see e.g. [Hatta, Xiao, Yuan]

Rq: x is strictly 0 in the uGPD

Interpolating scheme for exclusive Compton scattering

Overarching scheme

$$\int d\mathbf{x} \int d^d\mathbf{k} \mathcal{G}^{ij}(\mathbf{x}, \xi, \mathbf{k}, \Delta) H^{ij}(\mathbf{x}, \xi, \mathbf{k}, \Delta)$$

Bjorken limit

$$\int d\mathbf{x} H^{ij}(\mathbf{x}, \xi, 0, \Delta) \times \left[\int d^d \mathbf{k} \mathcal{G}^{ij}(\mathbf{x}, \xi, \mathbf{k}, \Delta) \right]$$

Regge limit

$$\int d^{d} k \mathcal{G}^{ij}(\mathbf{0}, \xi, \mathbf{k}, \Delta) \times \left[\int d\mathbf{x} H^{ij}(\mathbf{x}, \xi, \mathbf{k}, \Delta) \right]$$

We found an interpolating scheme

Do the two limits commute?

Leading twist limit of the Regge limit

$$\lim_{Q^2+Q'^2\to\infty} \mathcal{A}_{\text{Regge}} = g^2 \sum_f q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \times (-i\pi) \frac{G^{ij}(0,\xi,t)}{(0,\xi,t)} (\partial^j \Phi)(z,\ell) (\partial^j \Phi^*)(z,\ell)$$

Eikonal limit of the Bjorken limit

$$\lim_{\mathsf{x}_{\mathrm{Bj}},\xi\to 0} \mathcal{A}_{\mathrm{Bjorken}} = g^2 \sum_{f} q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d}$$

$$\times \lim_{\mathsf{x}_{\mathrm{Bj}},\xi\to 0} \int \mathrm{d}x \, \frac{G^{ij}(x,\xi,t)(\partial^i \Phi)(z,\ell)(\partial^j \Phi^*)(z,\ell)}{x - x_{\mathrm{Bj}} - \frac{\ell^2}{2z\bar{z}a^+P^-} + i0}$$

DDVCS beyond x = 0

00000000000

Double limit

Do the two limits commute?

If $G^{ij}(x, \xi, t)$ is a constant at x = 0:

$$\int dx \frac{G^{ij}(x,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)}{x - x_{\mathrm{Bj}} - \frac{\ell^{2}}{2z\bar{z}q^{+}P^{-}} + i0}$$

$$\simeq G^{ij}(0,\xi,t) \int dx \frac{(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)}{x - x_{\mathrm{Bj}} - \frac{\ell^{2}}{2z\bar{z}q^{+}P^{-}} + i0}$$

$$= G^{ij}(0,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)$$

$$\times \ln \left(\frac{1 - x_{\mathrm{Bj}} - \frac{\ell^{2}}{z\bar{z}\frac{Q^{2}+Q'^{2}}{2}}\xi + i0}{-1 - x_{\mathrm{Bj}} - \frac{\ell^{2}}{z\bar{z}\frac{Q^{2}+Q'^{2}}{2}}\xi + i0}\right)$$

and thus

$$\lim_{x_{\mathrm{Bj}},\xi\to 0} \int \mathrm{d}x \, \frac{G^{ij}(x,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)}{x-x_{\mathrm{Bj}}-\frac{\ell^{2}}{2z\bar{z}q^{+}P^{-}}+i0}$$

$$\simeq -i\pi \, G^{ij}(0,\xi,t)(\partial^{i}\Phi)(z,\ell)(\partial^{j}\Phi^{*})(z,\ell)$$

Do the two limits commute?

Leading twist limit of the Regge limit

$$\lim_{Q^2+Q'^2\to\infty} \mathcal{A}_{\text{Regge}} = g^2 \sum_f q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \times (-i\pi) \frac{G^{ij}(0,\xi,t)}{(0,\xi,t)} (\partial^j \Phi)(z,\ell) (\partial^j \Phi^*)(z,\ell)$$

Eikonal limit of the Bjorken limit provided the GPDs are constant at x = 0

$$\lim_{\mathsf{x}_{\mathrm{Bj}},\xi\to 0} \mathcal{A}_{\mathrm{Bjorken}} = g^2 \sum_{f} q_f^2 \int_0^1 \frac{\mathrm{d}z}{2\pi} \int \frac{\mathrm{d}^d \ell}{(2\pi)^d} \times (-i\pi) G^{ij}(0,\xi,t) (\partial^i \Phi)(z,\ell) (\partial^j \Phi^*)(z,\ell)$$

Checked with explicit final expressions for both double limits

Conclusion

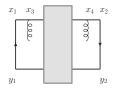
Where do we stand?

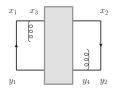
Bad news

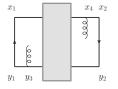
- Semi-classical small x physics has, at its core, issues with collinear logarithms
- The problem can be traced down to the very starting point
 Good news
- We now have a minimal correction of semi-classical small
 x which solves the problem from first principles
- Wave functions, and thus hard parts, are not modified by the scheme
- All we need is the right evolution equation...

BACKUP

The energy denominators







$$x_1$$
 x_2 x_3 x_4 x_2 x_4 x_4 x_5

$$\begin{split} &\operatorname{tr} \boldsymbol{G}_{\operatorname{scal}}^{R}(x_{2}, x_{1}) \boldsymbol{G}_{\operatorname{scal}}^{A}(y_{1}, y_{2}) \\ &= 16g^{2} \int \mathrm{d}^{D} x_{3} \int \mathrm{d}^{D} x_{4} \int \mathrm{d}^{D} y_{3} \int \mathrm{d}^{D} y_{4} \delta(y_{3}^{+} - x_{3}^{+}) \delta(x_{4}^{+} - y_{4}^{+}) \\ &\times (\partial_{x_{3}}^{+} \boldsymbol{G}_{0}^{R})(x_{3}, x_{1}) (\partial_{x_{4}}^{+} \boldsymbol{G}_{0}^{R})(x_{2}, x_{4}) (\partial_{y_{3}}^{+} \boldsymbol{G}_{0}^{A})(y_{1}, y_{3}) (\partial_{y_{4}}^{+} \boldsymbol{G}_{0}^{A})(y_{4}, y_{2}) \\ &\times \operatorname{tr} \left\{ \left[A^{-}(y_{3}) - A^{-}(x_{3}) \right] \boldsymbol{G}_{\operatorname{scal}}^{A}(y_{3}, y_{4}) \left[A^{-}(y_{4}) - A^{-}(x_{4}) \right] \boldsymbol{G}_{\operatorname{scal}}^{R}(x_{4}, x_{3}) \right\} \end{split}$$

56

$$\begin{split} &\operatorname{tr} G_{\operatorname{scal}}^R(x_2,x_1) G_{\operatorname{scal}}^A(y_1,y_2) \\ &= 16 g^2 \int \mathrm{d}^D x_3 \int \mathrm{d}^D x_4 \int \mathrm{d}^D y_3 \int \mathrm{d}^D y_4 \delta(y_3^+ - x_3^+) \delta(x_4^+ - y_4^+) \\ &\times (\partial_{x_3}^+ G_0^R)(x_3,x_1) (\partial_{x_4}^+ G_0^R)(x_2,x_4) (\partial_{y_3}^+ G_0^A)(y_1,y_3) (\partial_{y_4}^+ G_0^A)(y_4,y_2) \\ &\times \operatorname{tr} \left\{ \left[A^-(y_3) - A^-(x_3) \right] G_{\operatorname{scal}}^A(y_3,y_4) \left[A^-(y_4) - A^-(x_4) \right] G_{\operatorname{scal}}^R(x_4,x_3) \right\} \end{split}$$

Can be proven via the repeated use of Klein-Gordon in a potential, or by proving the generalization to $G_{\rm scal}$ of the relation

$$\frac{\partial}{\partial x^{+}}[y^{+}, x^{+}]_{x_{1}}[x^{+}, z^{+}]_{x_{2}} = -ig[y^{+}, x^{+}]_{x_{1}}[A^{-}(x^{+}, x_{1}) - A^{-}(x^{+}, x_{2})][x^{+}, z^{+}]_{x_{2}}$$

Structurally ready for a so-called dilute (perturbative) expansion

The free propagators G_0 provide the energy denominators.

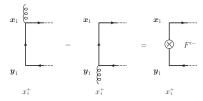
DDVCS from low to moderate x GDR QCD

Two useful technical details

• The classical field does not depend on x^- so $G_{\rm scal}(x,x_0)$ only depends on $(x^- - x_0^-)$, not on each separately: we can define

$$G_{\text{scal}}(x, x_0) \equiv \int \frac{\mathrm{d}p^+}{2\pi} \frac{\mathrm{e}^{-ip^+(x^- - x_0^-)}}{2ip^+} (x|\mathcal{G}_{p^+}(x^+, x_0^+)|x_0)$$

 ${\cal G}$ satisfies the Schrödinger equation instead of Klein-Gordon

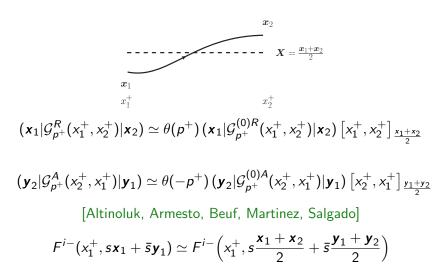


• Since $A^i = 0$, we have

$$A^{-}(x^{+}, \mathbf{x}) - A^{-}(x^{+}, \mathbf{y}) = -(\mathbf{x}^{i} - \mathbf{y}^{i}) \int_{0}^{1} ds \, F^{i-}(x^{+}, s\mathbf{x} + (1 - s)\mathbf{y})$$

DDVCS from low to moderate x GDR QCD

Partial twist expansion



DDVCS from low to moderate x

What about the overlapping limit?

Illustration: collinearly divergent contributions

Leading twist limit of the Regge limit

$$\lim_{Q^2 \to \infty} F_T(\mathbf{x}_{\mathrm{Bj}} \to \mathbf{0}, Q^2) \bigg|_{\mathrm{div}} \propto \frac{1}{\epsilon} \left[\mathbf{x} g(\mathbf{x}) \right]_{\mathbf{x} = \mathbf{0}} \int_0^1 \mathrm{d} \mathbf{y} \mathcal{P}^{qg}(\mathbf{y})$$

Eikonal limit of the Bjorken limit

$$\left. \lim_{\mathsf{x}_{\mathrm{Bj}} \to 0} F_{\mathcal{T}}(\mathsf{x}_{\mathrm{Bj}}, Q^2 \to \infty) \right|_{\mathrm{div}} \propto \frac{1}{\epsilon} \lim_{\mathsf{x}_{\mathrm{Bj}} \to 0} \int_{\mathsf{x}_{\mathrm{Bj}}}^{1} \mathrm{d}y \left[\mathsf{x} \mathsf{g}(\mathsf{x}) \right]_{\mathsf{x} = \mathsf{x}_{\mathrm{Bj}}/y} \mathcal{P}^{q\mathsf{g}}(\mathsf{y})$$

DDVCS from low to moderate x

What about the overlapping limit?

$$\left. \lim_{Q^2 \to \infty} F_T(x_{\rm Bj} \to 0, Q^2) \right|_{\rm div} =_{?} \left. \lim_{x_{\rm Bj} \to 0} F_T(x_{\rm Bj}, Q^2 \to \infty) \right|_{\rm div}$$

The two limits commute, and the collinear divergence of the Regge limit can be canceled using DGLAP if and only if

$$\lim_{x_{\mathrm{Bj}}\to 0} \int_{x_{\mathrm{Bj}}}^{1} \mathrm{d}y \left[xg(x)\right]_{x=x_{\mathrm{Bj}}/y} \mathcal{P}^{qg}(y) = \left[xg(x)\right]_{x=0} \int_{0}^{1} \mathrm{d}y \mathcal{P}^{qg}(y)$$

DDVCS from low to moderate x

61

What about the overlapping limit?

$$\lim_{x_{\mathrm{Bj}}\to 0} \int_{x_{\mathrm{Bj}}}^{1} \mathrm{d}y \left[xg(x)\right]_{x=x_{\mathrm{Bj}}/y} \mathcal{P}^{qg}(y) =_{?} \left[xg(x)\right]_{x=0} \int_{0}^{1} \mathrm{d}y \mathcal{P}^{qg}(y)$$

This equation is only correct provided that:

- The PDF is constant at x = 0 (arguably false)
- ullet The splitting function is integrable on $\{0,1\}$
 - \hookrightarrow True for \mathcal{P}^{qg} , false for \mathcal{P}^{gg}

In the Regge limit, \mathcal{P}^{qg} appears at LL and \mathcal{P}^{gg} at NLL. This is why the issue was only noticed at NLL.

However, the issue was here at LL all along and its origin is the fact that x is 0, which traces back to the shock wave approximation

DDVCS from low to moderate x GDR QCD