Back-to-back dijet photoproduction at NLO in the CGC

Pieter Taels Universiteit Antwerpen

Saturation at the EIC November 17th, 2022

University of Antwerp Particle Physics Group

(Gluon) TMDs

Mulders & Rodrigues (2001) Angelez-Martinez et al. (2015)

PDFs parameterise longitudinal structure of hadron $f(x, Q^2)$ TMDs parameterise 3D momentum structure + spin correlations $f_i(x, k_\perp, Q^2)$

	GLUONS	unpolarized	circular	linear	
polarisation of proton	U	$\left(f_1^g\right)$		$h_1^{\perp g}$	$\} \rightarrow$ this talk
	L		(g_{1L}^g)	$h_{_{1L}}^{_{\perp g}}$	
	Т	$f_{1T}^{\perp g}$	$g_{_{1T}}^{g}$	$h^g_{1T}, h^{\perp g}_{1T}$	

polarisation of gluon

 $\Gamma^{\mu\nu}(x,\mathbf{k}) = \frac{2}{p_A^-} \int \frac{\mathrm{d}\xi^+ \mathrm{d}^2 \boldsymbol{\xi}}{(2\pi)^3} e^{i\boldsymbol{\xi}^+ k^-} e^{-i\boldsymbol{\xi}\mathbf{k}} \langle p_A | \mathrm{Tr} \, F^{-\mu}(0) \mathcal{U}(0,\boldsymbol{\xi}^+,\boldsymbol{\xi}) F^{-\nu}(\boldsymbol{\xi}^+,\boldsymbol{\xi}) | p_A \rangle$ (Gluon) TMDs are process-dependent through gauge links / Wilson lines

Only low-x large- k_T tail known = unintegrated gluon distribution (UGD) Kutak, Sapeta (2012) Model + nonlinear high-energy evolution of low x gluon TMDs Marquet, Roiesnel, PT (2018)

Transverse-momentum dependent (TMD) factorisation Collins, Soper, Sterman ('85-'89) Collins (2011)

$$\sigma_{\text{TMD}} = \hat{\sigma}_f(\mathbf{P}^2) \otimes \mathcal{F}(x, \mathbf{k}_\perp, \mathbf{P}^2) + \hat{\sigma}_h(\mathbf{P}^2) \otimes \mathcal{H}(x, \mathbf{k}_\perp, \mathbf{P}^2)$$
$$+ \mathcal{O}\left(\frac{\Lambda^2}{\mathbf{P}^2}\right) + \mathcal{O}(\alpha_s^3)$$
del Castillo et al. (2021)

CSS: resum DGLAP logs $ln(P^2/\Lambda_{QCD}^2)$ and Sudakov logs $ln(P^2/k_{\perp}^2)$

Transverse-momentum dependent factorisation

CSS: resum DGLAP logs $ln(P^2/\Lambda_{QCD}^2)$ and Sudakov logs $ln(P^2/k_{\perp}^2)$

Color Glass Condensate

Mueller, McLerran, Venugopalan, Jalilian-Marian, Kovner, Leonidov, Iancu, Weigert (1990-2001)

JIMWLK: resum high-energy logs $\ln(s/\mathbf{P}^2) \sim \ln(1/x)$

CGC in the TMD limit

At LO, TMD-factorised form recovered from CGC in correlation limit

Wilson-line structure collapses into hadron tensor:

$$\begin{split} &\int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}_{\perp}\cdot(\mathbf{b}-\mathbf{b}')} \mathrm{Tr} \Big\langle U_{\mathbf{b}} \big(\partial^{i}U_{\mathbf{b}}^{\dagger}\big) \big(\partial^{j}U_{\mathbf{b}'}\big) U_{\mathbf{b}'}^{\dagger} \Big\rangle \\ &= g_{s}^{2} (2\pi)^{3} \frac{1}{4} \bigg[\frac{\delta^{ij}}{2} \mathcal{F}_{\mathrm{WW}}(x_{A},\mathbf{k}_{\perp}) + \bigg(\frac{\mathbf{k}_{\perp}^{i}\mathbf{k}_{\perp}^{j}}{\mathbf{k}_{\perp}^{2}} - \frac{\delta^{ij}}{2} \bigg) \mathcal{H}_{\mathrm{WW}}(x_{A},\mathbf{k}_{\perp}) \bigg] \end{split}$$

7

Dominguez, Marquet, Xiao, Yuan (2011) Altinoluk, Boussarie, Kotko (2019) Combining low-x and Sudakov resummation

Simultaneous resummation of $\ln(s/\mathbf{P}^2)$ and $\ln(\mathbf{P}^2/\mathbf{k}_{\perp}^2)$? Many approaches and implementations:

SW: Balitsky, Tarasov (2015)

HEF: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021) **BFKL**: Nefedov (2021)

PB: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)

CGC: Mueller, Xiao, Yuan (2011); Xiao, Yuan, Zhou (2017); Stasto, Wei, Xiao, Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan (2022)

Dijet photoproduction at NLO in the CGC

PT, Altinoluk, Beuf, Marquet (2022)

Framework: dipole formulation of CGC, light-cone perturbation theory ${}_{f}\langle (\mathbf{q})[\vec{p}_{1}]_{s_{1}}; (\bar{\mathbf{q}})[\vec{p}_{2}]_{s_{2}}|\hat{F} - 1|(\boldsymbol{\gamma})[\vec{q}]_{\lambda}\rangle_{i}$ $= \langle (\mathbf{q})[\vec{p}_{1}]_{s_{1}}; (\bar{\mathbf{q}})[\vec{p}_{2}]_{s_{2}}|\mathcal{U}(+\infty, 0)(\hat{F} - 1)\mathcal{U}(0, -\infty)|(\boldsymbol{\gamma})[\vec{q}]_{\lambda}\rangle$

Dipole picture: Mueller (1990) LCPT: Bjorken, Kogut, Soper (1971) Inclusive DIS: Beuf (2016-2017) **DIS:** Caucal, Salazar, Venugopalan (2022) **Dihadron:** Bergabo, Jalilian-Marian (2022) **Diffraction:** Boussarie et al. (2016);

9 Fucilla, Li, et al. (2022)

UV divergences

 $k_\perp \to \infty$ in loops, regulated with dimensional regularisation, no leftover logarithms

 $(k^+, \mathbf{k}_{\perp}) \rightarrow 0$ in final state, regulated with dimensional regularisation, no leftover logarithms

Rapidity divergences

 $k^+ \rightarrow 0$, regulated with cutoff k_{\min}^+ , 'renormalisation scale' k_f^+ , absorbed into JIMWLK evolution of LO cross section

$$\begin{split} \mathrm{d}\sigma_{\mathrm{NLO}} &= \int_{k_{\mathrm{min}}^+}^{k_f^+} \frac{\mathrm{d}p_3^+}{p_3^+} \hat{H}_{\mathrm{JIMWLK}} \mathrm{d}\sigma_{\mathrm{LO}} \\ &+ \int_{k_{\mathrm{min}}^+}^{+\infty} \frac{\mathrm{d}p_3^+}{p_3^+} \Big[\mathrm{d}\tilde{\sigma}_{\mathrm{NLO}} - \theta(k_f^+ - p_3^+) \hat{H}_{\mathrm{JIMWLK}} \mathrm{d}\sigma_{\mathrm{LO}} \Big] \end{split}$$

Dominguez, Mueller, Munier, Xiao (2011)

Collinear-soft divergences

Mix of dimensional regularisation and cutoff method Collinear divergences cancel between inside-jet radiation and self-energy Leftover soft divergences cancel between radiation in-and outside the jet

Back-to-back limit: Sudakov logarithms

Remnants of soft-collinear generate Sudakov double log with wrong sign! $d\sigma_{\rm NLO}^{\rm TMD} = d\sigma_{\rm LO}^{\rm TMD} \times \frac{\alpha_s N_c}{4\pi} \ln \left(\frac{\mathbf{P}_{\perp}^2 (\mathbf{b} - \mathbf{b}')^2}{c_0^2}\right)^2 \qquad (\mathbf{b} - \mathbf{b}')^2 \sim 1/\mathbf{k}_{\perp}^2$... but in our framework hard to distinguish soft $(k^+, \mathbf{k}_{\perp}) \rightarrow 0$ and rapidity $k^+ \rightarrow 0$ divergences

oversubtraction of high-energy logs via JIMWLK?

Kinematically consistent low-x resummation

High-energy evolution along p^+ in interval $k_{\min}^+ \rightarrow k_f^+$

'Naive' approach: strong ordering in p^+ only, implicitely assumes $s \to \infty$

More realistic approach calls for additional ordering in p^- , and additional renormalisation scale k_f^-

Implementing this ordering in final-state diagrams with suitable choice $k_f^+ = \frac{p_{j1}^+ p_{j2}^+}{q^+}$ and $k_f^- = \frac{\mathbf{P}_{\perp}^2}{2k_f^+}$ exactly compensates for wrong sign! We end up with expected:

$$d\sigma_{\rm NLO}^{\rm TMD} = d\sigma_{\rm LO}^{\rm TMD} \times -\frac{\alpha_s N_c}{4\pi} \ln\left(\frac{\mathbf{P}_{\perp}^2 (\mathbf{b} - \mathbf{b}')^2}{c_0^2}\right)^2$$

Beyond large- N_c and double log: see Paul Caucal's talk

Ciafaloni ('88); Andersson, Gustafson, Samuelsson ('96); Kwiecinski, Martin, Sutton ('96); Salam ('98); Motyka, Stasto (2009); Kutak, Golec-Biernat, Jadach (2011); Beuf (2014); Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019); Hatta, Iancu (2016) Nefedov (2022)

Breaking of TMD factorisation (?)

(Could rigorous power-counting à la SCET provide some insights?)

Outlook

Computed full NLO dijet photoproduction cross section in CGC

Recover correct Sudakov logs in TMD limit provided kinematical improved JIMWLK \rightarrow consistent way to perform high-energy and (the perturbative part of) CSS evolution

Appearance of factorisation breaking terms beyond LO

 \rightarrow At EIC, where Q_s^2 is small and only Weizsäcker-Williams gluon TMDs: ignore twist corrections Q_s^2/\mathbf{P}^2 and hope linearly polarised gluon contribution is small = ITMD (c.f.r. Cyrille's talk)

 \rightarrow At LHC, gauge-dependence crucial and saturation scale larger, but there TMD factorisation is broken for most processes...

Thanks for your attention !