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Introduction
®00

Inclusive dijet production in DIS at small-x

= probe of the saturated regime of QCD

= access to the Weizsacker-Williams gluon TMD in the back-to-back limit.
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Introduction
oeo

Dijets in DIS at NLO and small-x: many recent progresses!

@ Dihadrons production.
@ Photo-production limit.

@ Related processes: exclusive dijet, ,
Single inclusive hadron production ,
Diffractive dihadron

@ Results from different approaches: cross-check of a challenging computation!

In this talk: NLO impact factor for inclusive dijet production in DIS

@ Reliable QCD prediction requires to account for NLO corrections.
@ Systematic determination of the theoretical uncertainties.

@ Analytic expressions in back-to-back kinematics that simplify the numerical calculation.
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Introduction
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Outline

Brief overview of the computation for general kinematics

Divergences

Back-to-back limit at NLO: Sudakov logarithms and connection with TMD factorization.

Preliminary numerical results
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Overview
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Dipole picture, CGC EFT, covariant perturbation theory

@ We work in the dipole picture of DIS, large q—.

@ Covariant perturbation theory.

@ CGC effective vertex:
= (2m)3(q~ — p~ )y~ [ dPxp e (P Vy(x, )

= multiple gluon interactions with the target resummed via Wilson lines V/(x,)
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Overview
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LO cross-section in the CGC

@ Differential cross-section at leading order:

do.'y; +A—qg+X

d%k, d?p, dngdng

2
Oemer Ne 8 —ikr —ip r. = / / A /

- (2m)8 X e e TP S0 (x L, vy, XL ) RE0(Fys Fy)
LO

@ Convolution between perturbative factor describing the v* — g splitting...
R%O(rx}” r>/<y) = 8ZSZ;Q2KO(@er)KO(ery’)

@ ... and a color structure describing the interaction of gg with the dense target

Zro(xL,y x|, yl) = <Q(XJ-7yJ_;yj_axj_) —D(x1,y1)— D(YL7X1)+1>
—_———

quadrupole dipole Y

Dipole: D(x,,y.) = NiC<T1“(V(XJ_)VT(}’J_))
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Overview
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NLO computation: real amplitudes

Real diagrams

@ Already computed by
using spinor helicities techniques.

@ We recover their results.
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NLO computation: virtual amplitudes

Self-energies
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Overview
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Reducing the number of integrals

@ Example: the dressed vertex correction for longitudinally polarized v*.
k—ls

~
li—q -~
li—q+l2 p
eerq . . .
= ST [yl atz T TP Y (e VT )6 Vi)V ) - £t
™ y
& -)3/2 (79 Y% —imgk /zq-rax % _Z 2 2 2
X ;2(zqzq) Q(so',—o/o Ze 1+ z 1 v Ko (QXv) Xy = 25(2q — 2g)ry, + 2g(2q — 2g)ry,
2
+zgzgr,
z, z Py o Z z Pz X g 2q
X{{l_i_ig S 22y+,-0{i_7g}%} 2y
2z4 2zg +2zg) | rirs, 2z4 2(zg + zg) 53

Take home message

@ Compact expression!

@ Hopefully suitable for numerical evaluation.
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Divergences

Divergences
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Divergences
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What kind of divergence do we get?

@ UV (short distance) divergences
e internal momentum goes to oo or |z; — x| — 0.

e we use dim. reg. in the transverse plane to extract the UV pole of each diagram if
any.
@ Rapidity divergence, “slow gluon” when k; — 0.

@ Soft divergence ki — 0.

@ Collinear divergence, zgk gz — zgki — 0 or zgk g — zgp1 — 0.

Our regularization scheme

Dim. reg. in the transverse plane + lower cut-off A~ in the longitudinal direction:

oo dk= d27€k 0
g € g =
/ kg_ H / (27‘(‘)2_6 f(kg ,ng_)
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Divergences
00®00

Cancellation of UV and IR poles

@ Massless quark + universality of quark electric charge = no need for UV
renormalization

@ UV divergence cancels between free self-energy before shock-wave and dressed self energy

h-lb b h-lk-ls

@ The free self-energies after SW turn UV divergence of the free vertex correction before
shock-wave into IR

k— 12 [1+12

Remaining —% pole canceled a, e : _, e i
e \_/"k v Ilz
by the real correct|ons for IRC Iy
. = I jq\ " 7
safe cross-section h-q v
= Jets - (L 2 ) x 2

€IR EUuVv
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Divergences
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Cancellation of soft divergences

@ Soft divergences: double log of the A~ cut-off, In*(A~/q~).

@ Amplitude-level factorization of soft gluons: o to the LO color structure or the
cross-diagram color structure.

@ For the LO color structure, cancel separately among the virtual diagrams and among the

real (between in-cone and out-cone terms)

W\@:: i Vs V‘ .
+ g q

+qeq +geq

@ For the cross color structure, cancel between real and virtual:

¥ ’ Y
Vs Lo R2 R2’
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Divergences
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Cancellation of rapidity divergences

@ Rapidity divergence is regularized with a longitudinal momentum cut-off A~

@ The slow gluon phase space is divided using a factorization scale k.

@ We have found:

do i HA—aTHX

€3N, 25\ agh,

zn

d?k drgyd?p djg

slow

2D,y —2D.. 0.y + D.yQyrar oz + Da Qs 2y — Quy o — Dy Dyrr)

(D20 Qaygyz + DoeQyar 2y — Qayyre — Dawr Dyy)

Tyy

+
0]
T“.V

7 (DysQeyer + Doy Qurat o = Qs = D Dyry)

Y

(Dez Dyry + Doy Dyt — Do Quoy e — DayQyrrr 2)

T (Paar Dy + Dy Dyar = Dy Quyzar = DieQy :}) . (6.40)
zy Y
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Divergences
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Cancellation of rapidity divergences

@ Rapidity divergence is regularized with a longitudinal momentum cut-off A~

@ The slow gluon phase space is divided using a factorization scale k.

@ We have proven:

AT —0
* & k- * = ~
dongqurX =asln (/\f Kin ® dazo_)qurX + finite

action of LL JIMWLK on the LO x-section

@ Thus, the A~ dependence of the NLO impact factor is canceled by the JIMWLK evolution
of the LO cross-section from A~ to k; .
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The back-to-back limit

Back-to-back limit
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Back-to-back limit
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The back-to-back limit

® Def: |P.|=|zzki —zgpi|> |q.| = |k + pi]

@ LO: TMD factorization

do? aa+Xx

d2pP,.d%q.

N H(PL)/dszdzb/le—iqL(bL—bl) Gww(by,b\)+0O <Icil’l) 10 <PQS)
. —_— L L
LO >

(e [o,vT bV )o VI VBL)] ),

@ NLO: large Sudakov logarithms vs small-x logarithm.

Y*—=qg+X ) ,
7?12/3 - o« H(PL) / d®b, d?b' e fa(bL—bL)
1adqL NLO
2 TAY
% |:1704ch |n2 (PL(bL . bL) ) + . +CM5|FI (i) ’CLL®:| GWW(bL _ blL)
4m lory XBj
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Back-to-back limit
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Sudakov logarithms in our computation

@ Real diagrams with soft divergences.

/ + g q R2 ) R2’

@ However: the integration over the soft gluon gives the Sudakov with a positive sign!

Ao2ag ™ ~ H(PL) [ dbudlp et bt

<N, 2 N VARV k=
ash |n2 (PL(bL 5 bL) ) + ...+ asin (%) KLL®:| wa(bl — b/J_)
4 ¢ A

X {1+

@ Problem: overlapping phase space between soft gluons and slow gluons included in Ky,.
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Back-to-back limit
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Solution: collinearly improved small-x evolution of the WW

@ Kinematic improvement: impose both k,~ and k/ ordering (lifetime ordering).

— Resum large transverse double logarithms to all orders.
= Solve the instability of NLO B-JIMWLK evolution.

@ In practice, add an additional constraint in the LL evolution kernel

k2
+ + gl -
kg > ki =k, < o2 ke
f
with Q2 ~ Q% ~ P73 .
@ With this modification Kp1, = Krr,col . One recovers the expected double logarithm.

A~ H(PL) [ @b et

2 YA
X {1 _ 027,:/6 In? (Pl(blc2 b ) ) + oo+ aKrL,con®| Gww (bl — b))
0
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Back-to-back limit
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Sudakov resummation at single log accuracy

@ Exponentiation of the Sudakov logarithms Gww (res) — Gww (rop )S(P?,r2,)
PLodi as(u®)N. [T (P2 C
S(P?. 1) = exp _/ “”‘C[m(L)JrFSO_Sf}
(PL, riw) s 12 . 5 112 N,
@ Double and single Sudakov logarithms with exact N. dependence:

@ Dijet geometry single log sp

o _n (2(1 +co’s;;(AY12))) 4 O(RY

@ Single log from the interplay between small-x and Sudakov resummation:
P2 xg;
sf=1n <L2BJ2 )
7112 Q2cixs

= Dependence on the rapidity factorization scale x¢ at small x 17
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Back-to-back limit
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Finite terms in a5 in the back-to-back limit

Azimuthal anisotropies from soft gluon radiations

@ We can also access pure as (and non power suppressed) corrections.
@ Some of them are coming from soft gluon radiations.
@ Azimuthally averaged x-section sensitive to the linearly polarized gluon TMD at NLO!

(do) = ... + H(PL) ></

d2rbb/

(2m)*
as [ N 5 1
X ? {2+CF|H(R )—2/VCIn(Z]_Z2)}

e /91 h(rpy )S(P?, r2y)

@ The cos(2¢) anisotropy is also sensitive to the unpolarized gluon TMD,
dzrbb,
(2m)*
< 2 LN, + 26 In(RY) — = In(z12,)
T c N 142

Cc

e 91 cos(20) G (1 )S(P?, r2y)

(cos(2¢)do) = ... + H(PL) x /
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Back-to-back limit
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NLO hard factors

@ Some other pure a; corrections involve new "hard factors” and do not break TMD
factorization:
do —aa+X

m X (YSH{J\'ILO(PJ_)/d2bj_d2bj_e_iqL(bL_bL)G\’{/W(bj_, b/J_)

NLO

@ They come from virtual graphs in which the gluon does not cross the SW

Ll L L+l . J
I — — oY —> |/> —

q / — 4 — q —
— k N k . k

- NTA bl Iy bl Iy

Iy \ \

\ L - — 2 _ — =
hi—q i 1o [ hi=a S P
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Back-to-back limit
00000008000

NLO hard factors

@ Remarkably, they can be computed fully analytically!

@ They have the form
Q
Hyro(Pr) = Hro(P1) x f (Pl,21,22>

with f expressed in terms of logarithms and dilogarithms.

@ Example:
l hole by I htly
1
q / = 4, / -
o Nl L Ilz
Iy \

_ - =
h jq\ ? hoa hi—q+l p

L L 1
Hiph (PL) = HigW T (PL) x [4—4In (:) —4In (1 + uzﬂ

with u = /z1z2Q/ P, .
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Back-to-back limit
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TMD factorization at NLO at small-x

@ Can we put the full result in a factorized TMD form?

@ The small-x evolution of the WW is not closed.

@ At NLO, non-trivial color correlators, e.g.

Ne

2 <]- - Dy/x/ + sz,y’x/sz - szDzy>y

which does not reduce to the WW gluon TMD, unless at least Q2 < k2, ~ dilute limit.

@ Maybe there is an other argument to neglect these complicated finite terms beyond the
dilute limit...
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Back-to-back limit
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Preliminary numerical results

@ For the numerics, one may first focus on contributions which are naturally proportional to
Gww including

e Sudakov double and single logs,
e O(as) finite terms that do not break TMD factorization.

@ Requires numerical solution of a " collinearly improved” evolution of the WW =-
challenging!

@ Rely on the Gaussian approximation and use collinearly improved BK instead.
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Some plots with many caveats

@ Include:

e Sudakov with double and single log but at
fixed coupling.

o All finite terms that do not manifestly
break TMD factorization.

@ Does not include:

o Proper small-x evolution. The WW is
parametrized by Qs(xg;) in the Gaussian
approx.

e Factorization breaking terms.
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Back-to-back limit
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Azimuthally averaged dijet cross-section
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Conclusion
°

Summary and outlook

@ Proof of UV and IR finiteness of the dijet cross-section in the CGC.

@ Proof of JIMWLK factorization of the rapidity divergence for a process with non-trivial
final state.

@ Back-to-back limit: Sudakov double and single log at exact N., and impact factor.

@ Necessity to use a collinearly improved small-x evolution to find the correct Sudakov
double log.

@ Towards a numerical evaluation of the impact factor with saturation corrections: very

challenging...
But recent progresses with the complete evaluation of all non factorization breaking terms!
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