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Inclusive dijet production in DIS at small-x

⇒ probe of the saturated regime of QCD

⇒ access to the Weizsäcker-Williams gluon TMD in the back-to-back limit.
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Zheng, Aschenauer, Lee, Xiao, 1403.2413
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Dijets in DIS at NLO and small-x : many recent progresses!

Dihadrons production. Bergabo, Jalilian-Marian, 2207.03606, Iancu, Mulian, 2211.04837

Photo-production limit. Taels, Altinoluk, Beuf, Marquet, 2204.11650

Related processes: exclusive dijet, Boussarie, Grabovsky, Szymanowski, Wallon. 1606.00419 - 1905.07371,
Single inclusive hadron production Bergabo, Jalilian-Marian, 2210.03208 ,
Diffractive dihadron Fucilla, Grabovsky, Li, Szymanowski, Wallon, 2211.05774

Results from different approaches: cross-check of a challenging computation!

In this talk: NLO impact factor for inclusive dijet production in DIS

Reliable QCD prediction requires to account for NLO corrections.

Systematic determination of the theoretical uncertainties.

Analytic expressions in back-to-back kinematics that simplify the numerical calculation.
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Outline

Brief overview of the computation for general kinematics

Divergences

Back-to-back limit at NLO: Sudakov logarithms and connection with TMD factorization.

Preliminary numerical results
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Dipole picture, CGC EFT, covariant perturbation theory

We work in the dipole picture of DIS, large q−.

γ∗

p

k

l − q

l

q

Covariant perturbation theory.

CGC effective vertex:

= (2π)δ(q− − p−)γ−
∫

d2x⊥e−i(q⊥−p⊥)x⊥Vij(x⊥)

⇒ multiple gluon interactions with the target resummed via Wilson lines V (x⊥)
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LO cross-section in the CGC

Differential cross-section at leading order:

dσγ
∗
λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
LO

=
αeme2

f Nc

(2π)6

∫
d8X⊥e−ik⊥rxx′ e−ip⊥ryy′ΞLO(x⊥, y⊥; y ′⊥, x

′
⊥)RλLO(rxy , r ′xy )

Convolution between perturbative factor describing the γ? → qq̄ splitting...

RL
LO(rxy , r ′xy ) = 8z3

qz
3
q̄Q

2K0(Q̄rxy )K0(Q̄rxy ′)

... and a color structure describing the interaction of qq̄ with the dense target

ΞLO(x⊥, y⊥; x ′⊥, y
′
⊥) =

〈
Q(x⊥, y⊥; y ′⊥, x

′
⊥)︸ ︷︷ ︸

quadrupole

−D(x⊥, y⊥)− D(y ′⊥, x
′
⊥)︸ ︷︷ ︸

dipole

+1

〉
Y

Dipole: D(x⊥, y⊥) =
1

Nc
〈Tr(V (x⊥)V †(y⊥))
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NLO computation: real amplitudes

Real diagrams

�⇤
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q
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�⇤

p

MR,2

l1 � q

l1

l1 � l2 k

q

l2
kg

+(q ←→ q̄) +(q ←→ q̄)

Already computed by Ayala, Hentschinski, Jalilian-Marian, Tejeda-Yeomans, 1701.07143
using spinor helicities techniques.

We recover their results.
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NLO computation: virtual amplitudes

Self-energies

γ∗

p

k

l1 − q

l1
l1 − l2 l1

q

l2
�⇤

p

k
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l1
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q

l2 l3
�⇤

p

k

l1 � q

l1
k k � l2

q

l2

+(q ←→ q̄) +(q ←→ q̄) +(q ←→ q̄)

Vertex corrections

�⇤

p

k

l1 � q + l2
l1 � q

l1
l1 + l2

q

l2 �⇤

p

k

�p� l2
l1 � q

l1
k � l2

q

l2 γ∗

p

k

l1 − q + l2
l1 − q

l1
k − l3

q
l2

l3

+(q ↔ q̄)
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See also:

Beuf, 1606.00777
(LCPT)

Hänninen, Lappi, and
Paatelainen 1711.08207
(LCPT)

Boussarie, Grabovsky,
Szymanowski, Wallon.
1606.00419 -
1905.07371 (exclusive
dijet)

Taels, Altinoluk, Beuf,
Marquet, 2204.11650
(LCPT, Q2 = 0)
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Reducing the number of integrals

Example: the dressed vertex correction for longitudinally polarized γ?.

γ∗

p

k

l1 − q + l2
l1 − q

l1
k − l3

q
l2

l3

=
eef q
−

π

∫
d

2x⊥d
2y⊥d

2z⊥e−ik⊥x⊥−ip⊥y⊥ [taV (x⊥)V†(z⊥)taV (z⊥)V†(y⊥)− tata]

×
αs

π2
2(zqzq̄)3/2Qδσ,−σ̄

∫ zq

0

dzg

zg
e−izg k⊥/zq ·rzx

(
1 +

zg

zq̄

)(
1−

zg

zq

)
K0 (QXV )

×
{[

1−
zg

2zq
−

zg

2(zq̄ + zg )

]
rzx · rzy
r2
zx r2

zy

+ iσ

[
zg

2zq
−

zg

2(zq̄ + zg )

]
rzx × rzy

r2
zx r2

zy

}

Take home message

Compact expression!

Hopefully suitable for numerical evaluation.
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Divergences

Divergences
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What kind of divergence do we get?

UV (short distance) divergences

• internal momentum goes to ∞ or |z⊥ − x⊥| → 0.
• we use dim. reg. in the transverse plane to extract the UV pole of each diagram if

any.

Rapidity divergence, “slow gluon” when k−g → 0.

Soft divergence kµg → 0.

Collinear divergence, zqk⊥g − zgk⊥ → 0 or zq̄k⊥g − zgp⊥ → 0.

Our regularization scheme

Dim. reg. in the transverse plane + lower cut-off Λ− in the longitudinal direction:∫ ∞
Λ−

dk−g
k−g

µε
∫

d2−εkg⊥
(2π)2−ε f (k−g , kg⊥)
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Cancellation of UV and IR poles

Massless quark + universality of quark electric charge ⇒ no need for UV
renormalization

UV divergence cancels between free self-energy before shock-wave and dressed self energy

γ∗

p

k

l1 − q

l1
l1 − l2 l1

q

l2
�⇤

p

k

l1 � q

l1
l1 � l2 k � l3

q

l2 l3

The free self-energies after SW turn UV divergence of the free vertex correction before
shock-wave into IR

�⇤

p

k

l1 � q

l1
k k � l2

q

l2

�⇤

p

k

l1 � q + l2
l1 � q

l1
l1 + l2

q

l2

∝
(

2
εIR
− 2

εUV

)
∝ 2

εUV
11 / 25

Remaining 2
εIR

pole canceled
by the real corrections for IRC
safe cross-section
⇒ jets
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Cancellation of soft divergences

Soft divergences: double log of the Λ− cut-off, ln2(Λ−/q−).

Amplitude-level factorization of soft gluons: ∝ to the LO color structure or the
cross-diagram color structure.

For the LO color structure, cancel separately among the virtual diagrams and among the
real (between in-cone and out-cone terms)

For the cross color structure, cancel between real and virtual:
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Cancellation of rapidity divergences

Rapidity divergence is regularized with a longitudinal momentum cut-off Λ−.

The slow gluon phase space is divided using a factorization scale k−f .

We have found:
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Cancellation of rapidity divergences

Rapidity divergence is regularized with a longitudinal momentum cut-off Λ−.

The slow gluon phase space is divided using a factorization scale k−f .

We have proven:

dσγ
?→qq̄+X

NLO = αs ln

(
k−f
Λ−

)
KLL ⊗ dσγ

?→qq̄+X
LO︸ ︷︷ ︸

action of LL JIMWLK on the LO x-section

+

Λ−→0︷ ︸︸ ︷
finite

Thus, the Λ− dependence of the NLO impact factor is canceled by the JIMWLK evolution
of the LO cross-section from Λ− to k−f .
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The back-to-back limit

Back-to-back limit
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The back-to-back limit

Def: |P⊥| = |zq̄k⊥ − zqp⊥| � |q⊥| = |k⊥ + p⊥|

LO: TMD factorization Dominguez, Marquet, Xiao, Yuan, 1101.0715

dσγ
?→qq̄+X

d2P⊥d2q⊥

∣∣∣∣∣
LO

∝ H(P⊥)

∫
d2b⊥d2b′⊥e

−iq⊥(b⊥−b′⊥) GWW(b⊥, b′⊥)︸ ︷︷ ︸+O
(
q⊥
P⊥

)
+O

(
Qs

P⊥

)

NLO: large Sudakov logarithms vs small-x logarithm.

dσγ
?→qq̄+X

d2P⊥d2q⊥

∣∣∣∣∣
NLO

∝ H(P⊥)

∫
d2b⊥d2b′⊥e

−iq⊥(b⊥−b′⊥)

×
[

1−αsNc

4π
ln2

(
P2
⊥(b⊥ − b′⊥)2

c2
0

)
+ ...+ αs ln

(
1

xBj

)
KLL⊗

]
GWW(b⊥ − b′⊥)

DL computed in Mueller, Xiao, Yuan, 1308.2993 based on Higgs production in pA.
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2P⊥
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1
Nc

Tr
[
∂iV
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†(b′⊥)V (b⊥)
]〉

Y



Introduction Overview Divergences Back-to-back limit Conclusion

Sudakov logarithms in our computation

Real diagrams with soft divergences.

However: the integration over the soft gluon gives the Sudakov with a positive sign!

dσγ
?→qq̄+X

NLO ∼ H(P⊥)

∫
d2b⊥d2b′⊥e

−iq⊥(b⊥−b′⊥)

×
[

1+
αsNc

4π
ln2

(
P2
⊥(b⊥ − b′⊥)2

c2
0

)
+ ...+ αs ln

(
k−f
Λ−

)
KLL⊗

]
GWW(b⊥ − b′⊥)

Problem: overlapping phase space between soft gluons and slow gluons included in KLL.
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Solution: collinearly improved small-x evolution of the WW

Kinematic improvement: impose both k−g and k+
g ordering (lifetime ordering).

=⇒ Resum large transverse double logarithms to all orders.
=⇒ Solve the instability of NLO B-JIMWLK evolution.

Beuf, 1401.0313, Taels, Altinoluk, Beuf, Marquet, 2204.11650

In practice, add an additional constraint in the LL evolution kernel

k+
g ≥ k+

f =⇒ k−g ≤
k2
g⊥
Q2

f

k−f

with Q2
f ∼ Q2 ∼ P2

⊥.

With this modification KLL → KLL,coll , one recovers the expected double logarithm.

dσγ
?→qq̄+X

NLO ∼ H(P⊥)

∫
d2b⊥d2b′⊥e

−iq⊥(b⊥−b′⊥)

×
[

1− αsNc

4π
ln2

(
P2
⊥(b⊥ − b′⊥)2

c2
0

)
+ ...+ αsKLL,coll⊗

]
GWW(b⊥ − b′⊥)
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Sudakov resummation at single log accuracy

Exponentiation of the Sudakov logarithms GWW(rbb′)→ GWW(rbb′)S(P2
⊥, r

2
bb′)

S(P2
⊥, r

2
bb′) = exp

(
−
∫ P2

⊥

c2
0/r

2
bb′

dµ2

µ2

αs(µ2)Nc

π

[
1

2
ln

(
P2
⊥
µ2

)
+

CF

Nc
s0 − sf

])
Double and single Sudakov logarithms with exact Nc dependence:

Dijet geometry single log s0

s0 = ln

(
2(1 + cosh(∆Y12))

R2

)
+O(R2)

See also Hatta, Xiao, Yuan, Zhou, 2106.05307

Single log from the interplay between small-x and Sudakov resummation:

sf = ln

(
P2
⊥xBj

z1z2Q2c2
0xf

)
⇒ Dependence on the rapidity factorization scale xf at small x !?
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Finite terms in αs in the back-to-back limit
Azimuthal anisotropies from soft gluon radiations

We can also access pure αs (and non power suppressed) corrections.

Some of them are coming from soft gluon radiations. Hatta, Xiao, Yuan, Zhou, 2010.10774

Azimuthally averaged x-section sensitive to the linearly polarized gluon TMD at NLO!

〈dσ〉 = ...+H(P⊥)×
∫

d2rbb′
(2π)4

e−iq⊥·rbb′ ĥ(rbb′)S(P2
⊥, r

2
bb′)

× αs

π

{
Nc

2
+ CF ln(R2)− 1

2Nc
ln(z1z2)

}
The cos(2φ) anisotropy is also sensitive to the unpolarized gluon TMD.

〈cos(2φ)dσ〉 = ...+H(P⊥)×
∫

d2rbb′
(2π)4

e−iq⊥·rbb′ cos(2θ)Ĝ (rbb′)S(P2
⊥, r

2
bb′)

× αs

π

{
Nc + 2CF ln(R2)− 1

Nc
ln(z1z2)

}
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NLO hard factors

Some other pure αs corrections involve new ”hard factors” and do not break TMD
factorization:

dσγ
?→qq̄+X

d2P⊥d2q⊥

∣∣∣∣
NLO

∝ αsHij
NLO(P⊥)

∫
d2b⊥d2b′⊥e

−iq⊥(b⊥−b′⊥)G ij
WW(b⊥,b′⊥)

They come from virtual graphs in which the gluon does not cross the SW:

γ∗

p

k

l1 − q

l1
l1 − l2 l1

q

l2

�⇤

p

k

l1 � q + l2
l1 � q

l1
l1 + l2

q

l2 �⇤

p

k

�p� l2
l1 � q

l1
k � l2

q

l2
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NLO hard factors

Remarkably, they can be computed fully analytically!

They have the form

HNLO(P⊥) = HLO(P⊥)× f

(
Q

P⊥
, z1, z2

)
with f expressed in terms of logarithms and dilogarithms.

Example:

γ∗

p

k

l1 − q

l1
l1 − l2 l1

q

l2

�⇤

p

k

l1 � q + l2
l1 � q

l1
l1 + l2

q

l2

Hλ=L,ij
SE1+V1

(P⊥) = Hλ=L,ij
LO (P⊥)×

[
4− 4 ln

(
u

c0

)
− 4 ln

(
1 +

1

u2

)]
with u =

√
z1z2Q/P⊥.
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TMD factorization at NLO at small-x

Can we put the full result in a factorized TMD form?

The small-x evolution of the WW is not closed.
Dominguez, Mueller, Munier, Xiao, 1108.1752

At NLO, non-trivial color correlators, e.g.

Nc

2
〈1− Dy ′x′ + Qzy ,y ′x′Dxz − DxzDzy 〉Y

which does not reduce to the WW gluon TMD, unless at least Q2
s � k2

g⊥ ∼ dilute limit.

Maybe there is an other argument to neglect these complicated finite terms beyond the
dilute limit...
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Preliminary numerical results

For the numerics, one may first focus on contributions which are naturally proportional to
GWW including

• Sudakov double and single logs,
• O(αs) finite terms that do not break TMD factorization.

Requires numerical solution of a ”collinearly improved” evolution of the WW ⇒
challenging!

Rely on the Gaussian approximation and use collinearly improved BK instead.
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Some plots with many caveats

Include:

Sudakov with double and single log but at
fixed coupling.
All finite terms that do not manifestly
break TMD factorization.

Does not include:

Proper small-x evolution. The WW is
parametrized by Qs(xBj) in the Gaussian
approx.
Factorization breaking terms.
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Elliptic anisotropy
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Summary and outlook

Proof of UV and IR finiteness of the dijet cross-section in the CGC.

Proof of JIMWLK factorization of the rapidity divergence for a process with non-trivial
final state.

Back-to-back limit: Sudakov double and single log at exact Nc , and impact factor.

Necessity to use a collinearly improved small-x evolution to find the correct Sudakov
double log.

Towards a numerical evaluation of the impact factor with saturation corrections: very
challenging...
But recent progresses with the complete evaluation of all non factorization breaking terms!
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