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Dipole Picture of DIS at high energy

When photon coherent time larger than hadron longitudinal extent

σγ∗A
L,T = 2

!
d2r

! 1

0

dz
""ΨL,T (r, z;Q

2)
""2
!

d2bT (b, r, x)

Probing saturation requires large dipoles r ≳ 1/Qs

Photon WF has support for rQ̄ ≲ 1, with Q̄2 = z(1− z)Q2

Typical transverse momentum before scattering k2⊥ ∼ Q̄2
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Saturation in Diffraction

σD ∝ T 2

For Q2 ≫ Q2
s aligned-jet configuration dominates:

r ∼ 1/Qs and z ∼ Q2
s/Q

2

Diffractive cross section at high Q2 determined by saturation

Not true for inclusive cross section, dominated by r ≪ 1/Qs.
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Forward Dijets in the Correlation Limit

Two nearly back-to-back jets or hadrons

k1⊥ ≃ k1⊥ ∼ Q̄ ≫ K⊥ = |k1⊥ + k2⊥| ∼ Qs

Q2 high, but saturation fixes dijet momentum imbalance

Can be measured from azimuthal correlations

Competing mechanism by Sudakov radiation
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2+1 Jets in Diffractive DIS

Coherent diffraction: elastic scattering, nucleus target not broken

No momentum transfer |k1⊥ + k2⊥ + k3⊥| ∼ ΛQCD ∼ 0

k1⊥, k2⊥ ∼ Q ≫ k3⊥ ∼ Qs

Soft long. momentum k+3 = ξq+ with ξ ∼ k23⊥/k
2
1⊥ ∼ Q2

s/Q
2 ≪ 1

Gluon jet controls imbalance
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The Gluon Dipole

Coordinate space: R ∼ 1/k3⊥ ∼ 1/Qs ≫ r ∼ 1/k1,2⊥ ∼ 1/Q,

effective gg dipole

αs penalty, but no r2 from scattering of qq̄ dipole

The gg dipole scatters stronger by Nc/CF , i.e. larger Q
2
s

Saturation scale evaluated at the rapidity defining the gap
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Scales and Invariants

M2
qq̄ =

P 2
⊥

ϑ1ϑ2
∼ Q2

M2
qq̄g = M2

qq̄ +
k23⊥
ξ

x =
xqq̄

xP
=

Q2 +M2
qq̄

Q2 +M2
qq̄g

xP: fraction of target P−
N transferred to trijet by Pomeron

xqq̄ ≳ xBj: fraction to hard dijet

x: gluon splitting fraction w.r.t. Pomeron

Typical situation M2
qq̄g ∼ Q2 ⇝ x ≲ 1 and ξ ∼ Q2

s/Q
2 ≪ 1

Maximal gap and saturation momentum
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Splitting to qq̄

Order g0, Fock state expansion just
""qαλ1

(ϑ1,k1) q̄
β
λ2
(ϑ2,k2)

#

Coefficient (up to conservation δ’s)

ψi
λ1λ2

(ϑ1,k1) =

$
q+

2

eef
(2π)3

ϕil
λ1λ2

(ϑ1) k
l
1

k21⊥ + ϑ1ϑ2Q2

Energy denominator, off-shellness of qq̄ fluctuation

Eqq̄ − Eγ =
1

2q+

%
k21⊥
ϑ1

+
k21⊥
ϑ2

+Q2

&
=

1

2q+ϑ1ϑ2

'
k21⊥ + ϑ1ϑ2Q

2
(
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Splitting to qq̄g, Strict ξ → 0 Limit (“Large” MX)

Order g, Fock state expansion
""qαλ1

(ϑ1,k1) q̄
β
λ2
(ϑ2,k2) g

a
j (ξ,k3)

#

Coefficient (up to conservation δ’s and tαβ)

Ψij
λ1λ2

= −eefgq
+

(2π)6
1√
ξ
ϕil
λ1λ2

(ϑ1)

)
kl1

k21⊥ + Q̄2
+

kl2
k22⊥ + Q̄2

*
kj3
k23⊥

Expect cancellations since k1 + k2 is the small momentum

Energy denominator

Eqq̄g − Eγ =
1

2q+

%
k21⊥
ϑ1

+
k22⊥
ϑ2

+
k23⊥
ξ

+Q2

&
≃ k23⊥

2k+3

Eikonal gluon emission: trivially factorization
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Eikonal Scattering

Partons keep transverse coordinate x,y,z fixed during scattering

Ψij,αβ
λ1λ2

(ϑ1,x,ϑ2,y, ξ, z) =
eefgq

+

(2π)4
1√
ξ
ϕil
λ1λ2

(ϑ1)
rl

r
Q̄K1(Q̄r)

×
+)

(x− z)j

(x− z)2
− (y − z)j

(y − z)2

*
Uab(z)V (x)tbV †(y)

−
)
(x− z)j

(x− z)2
taV (x)V †(y)− (y − z)j

(y − z)2
V (x)V †(y)ta

*,

αβ

Helicity part, K1 Bessel, WW kernels, scattering after/before gluon

emission via Wilson lines
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Diffractive Projection

Color structure of amplitude Oa
αβ

""qαq̄βga
#

Isolate color singlet in amplitude

PD Oa
αβ ≡ 1

CFNc
tr
-
tcOc] taαβ .

Trijet cross section proportional to
1

ξ

""Ãlj
qq̄g

""2

Ãlj
qq̄g =

!
d2x

2π

!
d2y

2π
e−ik1·x−ik2·y rl

r
Q̄K1(Q̄r)

×
!

d2z

2π
e−ik3·z

)
(x− z)j

(x− z)2
− (y − z)j

(y − z)2

*
[Sqq̄g(x,y, z)− Sqq̄(x,y)]
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Gluon-Gluon Dipole

New momentum variables: P = ϑ2k1 − ϑ1k2, K ≡ k1 + k2

“Correlation limit”: P⊥ ≫ K⊥ ⇔ r ≪ R

Sqq̄g(x,y, z)− Sqq̄(x,y) → −Tgg(R)

Large distance emission from a dipole source factorizes

(x− z)j

(x− z)2
− (y − z)j

(y − z)2
≃ ri

R2

%
δij − 2RiRj

R2

&
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TMD Factorization and Cross Section

Do FT’s to go back to momentum space

Alj
qq̄g =

1

P 2
⊥ + Q̄2

%
δli − 2P lP i

P 2
⊥ + Q̄2

&

. /0 1
hard factor

%
KiKj

K2
⊥

− δij

2

&
G(K⊥, YP)

. /0 1
semi−hard factor

G(K⊥, YP) = 2

! ∞

0

dR

R
J2(K⊥R) Tgg(R, YP)

Real, symmetric, traceless dimensionless distribution.

Contains all QCD dynamics
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TMD Factorization and Cross Section

Straightforward to square (traceless × traceless ⇝ diagonal)

dσ
γ∗
T,LA→qq̄gA

D

dϑ1dϑ2d2Pd2KdYP
= HT,L(ϑ1,ϑ2, Q̄

2, P 2
⊥). /0 1

hard factor

dxGP(x, xP,K
2
⊥)

d2K. /0 1
semi−hard factor

TMD factorization, “first principles” result for Pomeron UGD
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Gluon Dipole Wavefunction (Small MX)

Ψlj
reg =

2

3
kl1

4
kj3 +

ξ
1−ϑ1

kj1

5

k21⊥ + Q̄2
+

kl2

4
kj3 +

ξ
1−ϑ2

kj2

5

k22⊥ + Q̄2

6

7 1

k23⊥ +M2

j: gluon pol., M2 = ξ
4

k2
1⊥
ϑ1

+
k2
2⊥
ϑ2

+Q2
5
gluon “off-shellness”

Both gluon vertex and energy denominator violate factorization

Switch to hard and semi-hard momenta P and K

Expand for K⊥ ≪ P⊥ and ξ ∼ K2
⊥/P

2
⊥, leading terms cancel

Add contribution from instantaneous quark propagator
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Gluon Dipole Wavefunction (“Small” MX)

Ψlj =
1

P 2
⊥ + Q̄2

%
δli − 2P lP i

P 2
⊥ + Q̄2

&
KiKj − (δij/2)K2

⊥
K2

⊥ +M2

Virtuality M2 = ξ

%
P 2
⊥

ϑ1ϑ2
+Q2

&

Is there a recoil since ξ is not too small?

|∆y|
r

∼ ξ

θ2

R

r
∼ ξP⊥/K⊥ small when ξ ≪ K⊥/P⊥ ≪ 1
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Adding gg Dipole Scattering Off Target

Fourier Transform K → R, insert amplitude Tgg(R), inverse FT

Alj
qq̄g =

1

P 2
⊥ + Q̄2

%
δli − 2P lP i

P 2
⊥ + Q̄2

&

. /0 1
hard factor

%
KiKj

K2
⊥

− δij

2

&
G(x,K⊥, YP)

. /0 1
semi−hard factor

G(x,K⊥, YP) = M2

! ∞

0

dRRJ2(K⊥R)K2(MR)Tgg(R, YP)

Hyperbolic Bessel K2 reflecting the off-shellness

Factorization: M2 =
x

1− x
K2

⊥ in terms of target fractions
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Effective Saturation Momentum

Virtuality limits the gg dipole size R

Diffusion
8
τq/τg ∼ K⊥/(

√
ξQ) ∼

√
1− x

Effective saturation momentum Q̃2
s(x, YP) = (1− x)Q2

s(YP)
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The Pomeron UGD

MV, Q2
s = 2 GeV2 BK, �YP = 3
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Q̃2
s(x) = (1−x)Q2

s

dxGP(x, xP,K
2
⊥)

d2K
= (1− x)

9
::;

::<

1 for K⊥ ≪ Q̃s

Q̃4
s

K4
⊥

for K⊥ ≫ Q̃s

Modulo smooth functions of x and K2
⊥, slightly softer power with BK.

Strong, “integrable” decrease at large momenta

Approximate scaling after dividing by 1− x
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Pomeron Gluon Distribution

dσ
γ∗
T,LA→qq̄gA

D

dϑ1dϑ2d2PdYP
= HT,L(Q̄

2, P 2
⊥)xGP(x, xP, P

2
⊥)

xGP(x, xP, P
2
⊥) = π

! P 2
⊥

0

dK2
⊥
dxGP(x, xP,K

2
⊥)

d2K
≃ πκ(x, P 2

⊥)(1−x)2Q2
s(YP)

K⊥ ∼ Qs dominates, saturation determines PDF at hard scale P⊥
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Converging as inverse power of P⊥, smooth function of x
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Evolution

High energy (BK/JIMWLK) evolution of the target

DGLAP evolution of the Integrated Pomeron

Initial condition by saturation

Eliminates possible Sudakov effects

Remarkable case incorporating both types of evolution
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DGLAP Evolution

BK+DGLAPMV+DGLAP

�YP = 3Q2
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Conclusions

Hard dijet production process sensitive to saturation

Significance of soft gluon

αs penalty, but no r2 from scattering of qq̄

Leads to large gg dipole R ∼ 1/Qs

Provides for imbalance of dijet

Saturation relevant even when not measuring imbalance

BK/JIMWLK as initial condition for DGLAP

Integrate over all phase space ⇝ qq̄g component of DSF

Similar process in Ultra Peripheral AA collisions

Sudakov? Feasible at EIC?
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