Forward hadron suppression at the LHC

Óscar Boente García 17/11/2022 Saturation at the EIC, IJCLab boente@llr.in2p3.fr

Óscar Boente García

Forward hadron suppression at the LHC

Low-*x* phenomena

- At large energies and low parton momentum fraction (*x*) → saturation of the gluon density of hadrons
- Base for Color Glass Condensate effective-field theory
- Gluon saturation enhanced in heavy nuclei $\sim A^{1/3}$ (PRL100, 022303 (2008))
- Saturation and other nuclear effects can be studied with the particle production ratio in pPb and pp collisions \rightarrow nuclear modification factor

$$R_{pPb}(\eta, p_{\rm T}) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_{\rm T})/dp_{\rm T} d\eta}{d^2 \sigma_{pp}(\eta, p_{\rm T})/dp_{\rm T} d\eta}, \quad A = 208$$

Ann.Rev.Nucl.Part.Sci.60:463-489,2010

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Probing low-x at LHC

PHENIX (pAu)

PHENIX (Aup)

 $p_{\rm T} > 1.5 \, {\rm GeV}/c$

 10^{-3}

Pb

 10^{-2}

backward

 10^{-1}

BRAHMS

 10^{-5}

 10^{-4}

x

- Excellent performance in pPb and pp collisions
- This talk \rightarrow light hadron production measurements to tests of nuclear effects

Óscar Boente García

Forward hadron suppression at the LHC

Measurements for today

- 1. Charged hadron production in pPb and pp Phys.Rev.Lett. 128 (2022), 142004
- 2. Neutral pion production in pPb and pp arXiv:2204.10608
- 3. D^0 production in pPb arXiv:2205.03936

Charged hadron production in pPb and pp

Phys.Rev.Lett. 128 (2022), 142004

Nuclear modification factor
$$\rightarrow R_{pPb}(\eta, p_{T}) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_{T})/dp_{T} d\eta}{d^2 \sigma_{pp}(\eta, p_{T})/dp_{T} d\eta}$$
, $A = 208$

$$\frac{d^{2}\sigma}{dp_{\mathrm{T}}d\eta}\bigg|_{p\mathrm{Pb},pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta,p_{\mathrm{T}})}{\Delta p_{\mathrm{T}}\Delta\eta}$$

 N^{ch} : prompt charged particle yield $\Delta\eta, \Delta p_{\mathrm{T}}$: bin size

 \mathscr{L} : integrated luminosity of the dataset

- Measure prompt charged particles: long-lived particles (lifetime > 30 ps)
 - produced in primary interaction or without long-lived ancestors
- Long-lived charged particles: $\pi^-, K^-, p, \Xi^-, \Sigma^+, \Sigma^-, \Omega^-, e^-, \mu^-(+cc.)$

• Datasets at
$$\sqrt{s_{\rm NN}} = 5 \,{\rm TeV}$$

• Measure R_{pPb} in common η range

Beam	Acceptance	Luminosity
pp	$2 < \eta < 4.8$	$3.49 \pm 0.07 \mathrm{nb^{-1}}$
<i>p</i> Pb	$1.6 < \eta < 4.3$	$42.73 \pm 0.98 \mu \mathrm{b}^{-1}$
Pbp	$-5.2 < \eta < -2.5$	$38.71 \pm 0.97 \mu \mathrm{b}^{-1}$

Forward hadron suppression at the LHC

Charged hadron production in *p*Pb and *pp*

• $N^{\rm ch}$ measured with long tracks, covering $p > 2 \,\text{GeV}/c, \ 0.2 < p_{\text{T}} < 8 \,\text{GeV}/c$

• $N^{\rm ch} = N^{\rm candidates} \underline{P}$ $\mathcal{E}_{reco}\mathcal{E}_{sel}$

- $N^{\text{candidates}}$: selected long tracks
- *P*: signal purity
- $\varepsilon_{\rm reco}$: reconstruction efficiency
- ε_{sel} : selection efficiency
- Measurement dominated by systematic uncertainties:
 - particle composition (π, K, p) abundance in pPb for most bins
 - tracking efficiency and signal purity in boundary (η, p_T) bins

Figure from <u>JINST 10 (2015) 02, P02007</u>

Uncortainty source	<i>p</i> Pb [%]	p Pb [%]	nn [0]
Oncertainty source	(forward)	(backward)	pp [70]
Track-finding efficiency	1.5 - 5.0	1.5 - 5.0	1.6 - 5.3
Detector occupancy	0.0 - 2.8	0.6 - 2.9	0.1 - 1.6
Particle composition	0.4 - 4.1	0.4 - 4.6	0.3 - 2.4
Selection efficiency	0.7 - 2.2	0.7 - 3.0	1.0 - 1.7
Signal purity	0.1 - 1.8	0.1 - 11.7	0.1 - 5.8
Luminosity	2.3 $ $ 2.3	2.5	2.0
Statistical uncertainty	0.0 - 0.6	0.0 - 1.0	0.0 - 1.1
Total (in $d^2\sigma/d\eta dp_T$)	3.0 - 6.7	3.3 - 14.5	2.8 - 8.7
Total (in R_{pPb})	4.2 - 9.2	4.4 -16.9	_

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Charged hadron production in *p*Pb and *pp*

Phys.Rev.Lett. 128 (2022), 142004

- Precise double-differential cross-sections measured over a wide η range
- Recent LHCb measurement at $\sqrt{s} = 13$ TeV for pp (JHEP 01 (2022) 166)

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Charged hadrons *R*_{*p*Pb}: backward region

Phys.Rev.Lett. 128 (2022), 142004

A = 208

Charged hadrons R_{pPb} : forward region

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Comparison with CGC NLO

Plot and prediction: <u>Phys. Rev. Lett. 128, 202302</u>

Data: Phys.Rev.Lett. 128 (2022), 142004

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Charged hadrons R_{pPb} : (x_{exp}, Q_{exp}^2) dependence

Phys.Rev.Lett. 128 (2022), 142004

- experimental proxies for (x, Q^2)

$$Q_{exp}^2 \equiv m^2 + p_{\rm T}^2$$
 and $x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{\rm NN}}} e^{-\eta}$

- with η and $p_{\rm T}$ the center of each bin and $m=256\,{\rm MeV}/c^2$
- indirect study of the evolution of R_{pPb} with x and Q^2
- Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2 , between forward, central and backward η regions

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Neutral pion production in pPb and pp

arXiv:2204.10608

- Measurement of π^0 production cross-section:
 - Disentangle effects from different hadrons \rightarrow understand enhancement in backward
 - Input to fragmentation functions (hadronization)
 - Constrains to nPDFs and test of saturation
 - Input needed for direct photon production measurement
- Detection technique fully independent from charged particle analysis:
 - Measure $\pi^0 \to \gamma^{cnv} \gamma^{cal}$
 - * use $\pi^0 \rightarrow \gamma^{cal} \gamma^{cal}$ as cross-check and efficiency calibration

 γ^{cnv} e^+

- Datasets:
 - *p*Pb and Pb*p* data at 8.16 TeV
 - *pp* reference constructed with 5 and 13 TeV datasets

Kinematic coverage:

$$\begin{array}{l} 1.5 < p_{\rm T} < 10.0 \, {\rm GeV}/c \\ 2.5 < \eta_{\rm CM} < 3.5 \\ -4.0 < \eta_{\rm CM} < -3.0 \end{array} \end{array}$$

Forward hadron suppression at the LHC

Neutral pion production in pPb and pp

- Yields of π^0 extracted from fit to mass spectrum for each kinematic bin
 - Signal: two-sided Crystal Ball function
 - Combinatorial background: constructed with proxy sample of charged tracks
 - Bremsstrahlung: combination of the converted photon and its own brem. radiation
- Yields of π^0 corrected by detector effects using simulation:
 - Calibration to correct data-simulation differences (JINST 14 (2019) P11023)
 - Iterative unfolding technique used to correct efficiency and resolution effects

arXiv:2204.10608

Óscar Boente García Forward hadron suppression at the LHC 17/11/2022

Neutral pion production in pPb and pp

- Result for $d\sigma/dp_{\rm T}$ cross-section
- Interpolation of 5 TeV and 13 TeV cross-section to construct the reference for R_{pPb}
- Correlated uncertainties across datasets cancel in R_{pPb}:
 - total uncertainty less than $6\,\%\,$ in most $p_{\rm T}$ intervals

Source	$\mathrm{d}\sigma/\mathrm{d}p_{\mathrm{T}}[\%]$	$R_{p\mathrm{Pb}}\left[\% ight]$
Fit model	2.0 - 12.6	0.9 - 15.8
Unfolding	0.3 - 6.4	0.4 - 6.4
Interpolation	—	0.9 - 4.5
Material	4.0	_
Efficiency	1.3 - 1.9	1.9 - 2.1
Luminosity	2.0 - 2.6	2.2 - 2.3
Total systematic	5.4 - 15.0	4.3-17.4
Statistical	1.0-9.6	1.4-9.1

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022 ¹⁴

Neutral pion R_{pPb}: backward region

- Cronin-like enhancement of π^0 production
 - Enhancement less pronounced than for charged particles (π^-, K^-, p, \ldots mixture)
 - Indication of a mass-ordering in the Cronin enhancement, as observed by other experiments
 - compatible with final-state recombination picture (Phys. Rev. Lett. 93, 082302)
- Excess over reweighted nPDFs predictions between 2 and $4 \, GeV/c$

arXiv:2204.10608

17/11/2022

Neutral pion R_{pPb}: forward region

D^0 production in *p*Pb

- Measurements of D^0 production in pPb with Run 2 data
- Using sample x20 larger than previous measurement (JHEP 10 (2017) 090)
- Finer binning and extended kinematic range to $p_{\rm T} \in [0,30] \, {\rm GeV}/c$

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022 17

D^0 production in *p*Pb

- R_{pPb} probes low-x region in the forward region
- Data compared with two CGC calculations, overall good agreement:
 - CGC1 → <u>PR D91, 114005 (2015)</u> arXiv:1612.04585
 - CGC2 → <u>PR D98, 074025 (2018)</u>

 μ ν μ ν ν

Forward hadron suppression at the LHC

Future prospects

- Neutral side:
 - other neutral mesons (η and η')
 - direct photon production
 - direct gamma hadron correlation
- Charged side:
 - Identified hadron spectra: (π^-, K^-, p)
 - * good prospects: PID systematic in similar measurement in pHe system below 5 %
 - Reduce one of the main systematic uncertainties in inclusive charged hadron measurement
- For Run3/Run4
 - Larger *p*Pb sample
 - Short *p*O run possible, saturation in mid-size nucleus
 - LHCb upgrade: improved detector performance
- New ideas to exploit LHCb data always welcome!

Phys. Rev. Lett. 121 (2018) 222001

Forward hadron suppression at the LHC

17/11/2022 ¹⁹

Summary

- Hadron production measurements at LHCb provide a unique access to the saturation region:
 - Charged hadron production in pPb and pp collisions Phys.Rev.Lett. 128 (2022), 142004

arXiv:2204.10608

accepted by PRL

- π^0 production in *p*Pb and *pp* collisions
- D^0 production in pPb collisions <u>arXiv:2205.03936</u>
- All measurements show a significant hadron suppression in the forward region
 - compatible results with independent experimental techniques
- Data has high precision and can constrain CGC-based calculations
- Several oncoming Run2 analyses will improve precision and/or provide additional information on saturation
- Several interesting prospects beyond: pO and pPb runs, new upgraded detectors

Backup

Forward suppression at RHIC

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Hadron - photon correlation in *p*Pb

 $CP(\Delta\phi)$

 $P(\Delta\phi)$

 $P(\Delta\phi)$

Cleaner access to saturation region
 Compton-scattering process

Poster by Cesar Luiz Da Silva in QM 2018

Óscar Boente García

Forward hadron suppression at the LHC

17/11/2022

Neutral pion production in *p*Pb

LHCb-PAPER-2021-053 (in preparation)

Comparison with non-reweighted nPDF predictions