Jeremy Couthures

Mu = 0 TrackML

Tracking efficiency

5 °F
] ™
198 o nii s S T e
% E P s
196 -
E]
084
oszf
E &
LRI
E L]
ossf
085
E Delaull
aBE Orhegenal &
08zf B Dot bucke: size - 24
0.5:"‘--.|...,,‘
Truthn

082

M@W H

100
Truth 6T [GaVic]

fficiency
8

!
:

W Delsull bucke! size = 20}

Truth &

Fake rate
-~ =
[T I - |

a

Fake rate
e
R -1

O M s o om

Fake rate

Tracking fake rate

C
E Ld

T 1

pT [Gavie|

F ol
= hogonal
F i ¥ Oelaolt buckes
L s 3 .

Duplication rale

Duplication rale

Duplication rale

Duplication rate

[wm]
F - -
o8- - -
F - ™
07 - -
o8-
E DOefaun
05— Crthegenal
F ¥ Delaul bucke: size = 20|
al I 1 I I L 1 I I I 1 I I
o) 0 2
n
08 *
- o il
£ 'E .}
a7
08f-
osf
o F 1 1
- 50 100
pT [Gewic]
Eov A 5 TIIYITTy
E ,v
o8 LM ‘. ;‘W '1"“
FoT v"v‘v‘v‘v‘"" vv‘y
07
o
asf
gl I L L I L I 1 I I L 1 I L I
o4 -2 a 2
¢

running timefevent (s)

time per event u =0

1 Y ®m Default total: 145 ms
10° 4 Orthogonal total: 87 ms
i ¥ Default bucketSize = 20 total: 4244 ms
] v
2
1071 7 i v
5] h

10 v

] ?
1037 v

] : A

{ B

T T T T T T T
My Soo, ”
K) ;
ths, Cgp, Sy, ka, Sk, iy, (1N
S, i 9) 'y g g,
Se, (v s, fa %
- U Esy,
Op & iy
agfon

Mu = 50 TrackML

Tracking efficiency Tracking fake rate Duplication rate

= 1 @ 10 1)
Sb ™ - Basf 1. 3
% P %045— %M__ - "~
i3 = b 0ssE 5 f - a
oga | E &, F
E E o8l
0s2f- 0ap E] []
osf W - azsg oib P i ™
assf 0zf E - ™ .
sk o o8 , time per event u = 50
' E Delaull 04 E_ r Deliault 10 _E
Z : E " g:ll;:nslkv size = 50| L 008 E_ o ki g:ﬁ:;iw size = 50|] u Default total: 3572 ms
T L E I 1 4 Orthogonal total: 1589 ms v
E ° Tunn * ¢ oo 1| ¥ Default bucketSize = 50 total: 111892 ms
3 j R e
Lo Zaof S 2 1 o Y
RE T ol i] 1
3 sE 2 et g 20 g "
: g o8 3 10° 5
o8z 2o L) 3
asf E 07 E j
ossf 5 E =]
E E o5t 2 o1 ¥ Y
086 w0 E = 107 3 F 3
E F Defautt C]
084 3 n3 Cnegenal osf g] n
a8z F ¥ Deladiips E = 1
G'Bt_ 5ID 1c|'u o 1 0"(_ 5|0 mlu =9 J []
Truth pT [GeVig] pT [Gavic] oT [Gavic] 10 _; !
5 F & F i F] 1
ger Ty ” goe 50;_ 1 "
BRI 5L RS2l AN TF e, - . ; ; . . |
o8 ;_ F a o_a_— Mo Q‘v" w‘ "V ":v“‘" ?;b{é ‘%&C S@Elof -?PSC} ?}6(-" A
oszf aaf F 7 :""‘" Se, &, ; n, o .Dar Fj’;?d' !09 9@3@@
aaf F 07} dss; % 3 s,) Q3
E a3 E I, & Sy
[:3:1= s o ‘or i fo)ag
0.85 azf O-E:_ fo"-’
0Bt E sl ol
08z 01 :_ b E Dilaault bucke? size = 50|
08 -Iz é 2'] [2 04 -Iz 5 zI

Truth & @ I

Orthogonal Seeding

stephenswat commented on Jul 30, 2021 - edited ~ Member

As | said in #3901, | have been playing around with seed finding a little bit lately. Last weekend, | mentioned an idea for a new (?)
kind of seed finding algorithm based on range search datastructures, and this is the very, very first semi-working implementation of
it, just before the weekend.

The idea behind this algorithm is relatively simple. In traditional seedfinding, we check a whole lot of candidate spacepoints to see
whether they meet some condition. If you look at this differently, each spacepoint defines a volume in the z-r-p space, which
contains any spacepoints it can form a doublet with. What if we reversed this logic? What if we defined this volume first, and then
just extract the spacepoints inside of that space? That way, we can vastly reduce the number of spacepoints we need to look at.

How do we do this quickly? With k-d trees. These data structures are cheap to build, and they give us very fast orthogonal range
searches. In other words, we can very quickly look up which of our spacepoints lie within an axis-aligned orthognal n-dimensional
hyperrectangle. In this case, which spacepoints lie within a z-r-¢ box.

S0, the core idea of this seedfinder is to define as many of our seedfinding constraints in orthogonal fashion. That way, we can
make our candidate hyperrectangle smaller and smaller. The tighter the constraints we can place, the better. Then, we look up the
relevant spacepoints, and we can avoid looking at any others. That also means this solution requires no binning whatsoever.

_

Orthogonal Seeding

D efa u |t ’0uter|layer‘ | I | | l | | ‘ | |
| | Look for lines
Z-@ bins | T e e T
T T T e T
~':]P
a i o Z-I’-(p
Orthogonal e
K-d trees FT &

Look for volume

29/11/22

Orthogonal Seeding

Default Py N

Orthogonal .' . ‘ ‘l ‘ |

Orthogonal Seeding

Default Py

Orthogonal

Conclusion

- Efficacités hashing/orthogonal plus élevées que le
Default ; hashing, plus de duplicates

« Hashing prend beaucoup plus de temps ~ x30
Orthogonal prend ~2x moins de temps que Default

La suite ?
e Mu =100

« Bucket intelligent (moins de buckets a passer au
seeding)

_

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8

