Euclid Modelling Challenge The 2PCF in Redshift-Space

Euclid France Clustering Meeting 2022 at LAM

Martin Kärcher, Sylvain de la Torre, Alfonso Veropalumbo, Michel-Andrés Breton

What is it about?

- Part of a whole suite of modelling challenges in the clustering SWG:
 - Power and bi-spectrum in real and redshift-space + combined analysis
 - 2PCF and 3PCF in real and redshift-space + combined analysis
- Different models for real to redshift-space conversion tested
- Try to recover growth parameter with 1% rel. accuracy \rightarrow matching expected accuracy of Euclid
- Analysis done on same Euclid mock galaxy catalog throughout all challenges

Set the Stage for Modelling Challenge

- As simulation we use Flagship 1, HOD model 3 galaxies
- Average over three LOS and fit monopole, quadrupole and hexadecapole of $\boldsymbol{\xi}$ in redshift-space
- Four different redshifts z=0.9, 1.19, 1.53 and 1.79
- Three different minimum fitting lengths $s_{min} = 20,30,40$ Mpc/h
- Two codes for TNS model (SdIT, AV), one for CLPT (MAB) and one for CLEFT (SdIT)

The Models in more Detail TNS (Taruya, Nishimichi, Saito)

- Start by exact expression for power spectrum in redshift space
- Expand the ensemble average in terms of cumulants
- Keep only terms up to specific order \rightarrow two additional correction terms (A- and B-terms)
- Modelling completely done in Fourier space and then FFT'ed back to configuration space

$$\delta^{(S)}(\boldsymbol{k}) = \int d^3\boldsymbol{r} \left\{ \delta(\boldsymbol{r}) - \frac{\nabla_z v_z(\boldsymbol{r})}{a H(z)} \right\} e^{i(k\mu v_z/H + \boldsymbol{k} \cdot \boldsymbol{r})}$$

 $P^{(S)}(k,\mu) = D_{FoG}[k\mu f \sigma_{v}] \left\{ P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k) + A(k,\mu) + B(k,\mu) \right\}$

The Models in more Detail **CLPT and CLEFT**

- Gaussian streaming approximation for mapping from real to redshift space
- Real space modelling is done in CLPT (Convolutional Lagrangian Perturbation Theory) formalism based on the velocity moment generating function $Z(\mathbf{r}, \mathbf{J}) \rightarrow Wang+(2013)$
- Three main ingredients: correlation function in real space, mean pairwise velocity, velocity dispersion
- If ingredients are computed from LEFT (Lagrangian Effective Field Theory) \rightarrow additional counterterms \rightarrow CLEFT model \rightarrow <u>Vlah+ (2016)</u>
 - We keep three terms as free fit parameters

$$1 + \xi^{s}(s_{\perp}, s_{\parallel}) = \int \frac{dy}{\sqrt{2\pi} \sigma_{12}} \left[1 + \xi\right] \exp\left\{-\frac{[s_{\parallel} - y - \mu]}{2\sigma_{12}^{2}}\right\}$$

 $-\mu v_{12}$

$$Z(\mathbf{r}, \mathbf{J}) = \int d^3q \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot(\mathbf{q}-\mathbf{r})} \int \frac{d\lambda_1}{2\pi} \frac{d\lambda_2}{2\pi} \times \tilde{F}(\lambda_1) \tilde{F}(\lambda_2) \left\langle e^{i\left(\lambda_1\delta_1 + \lambda_2\delta_2 + \mathbf{k}\cdot\mathbf{\Delta} + \mathbf{J}\cdot\dot{\mathbf{\Delta}}/H\right)} \right\rangle$$

Galaxy Biasing

- Renormalized bias up to one loop \rightarrow 4 free bias parameters in TNS model
- Local Lagrangian (LL) approximation expresses two non-local bias parameters in terms of $b_1 \rightarrow 2$ free bias parameters
- CLPT and CLEFT uses slightly different bias expansion \rightarrow one additional free bias parameter in CLEFT

$$\delta_{g} = b_1 \delta + \frac{b_2}{2} \delta^2 + b_{\mathcal{G}_2} \mathcal{G}_2 + b_{\Gamma_3} \Gamma_3$$

<u>Bautista+ (2020)</u>

$$b_{\mathcal{G}_2} = -\frac{2}{7}(b_1 - 1)$$

 $b_{\Gamma_3} = \frac{11}{42}(b_1 - 1).$

Intermediate Results Contours

Intermediate Results **Best Fit Parameters**

Relative difference in %

Intermediate Results **Best Fit Correlation Function**

Assess Performance of the Models

- χ^2_{red} for best fit value \rightarrow Over-/underfitting
- Figure of Merit (FoM) \rightarrow Constraining power (Precision)
- Figure of Bias (FoB) \rightarrow Recovery of fiducial parameters (Accuracy)

Metrics computed for: $f\sigma_8, \alpha_{\parallel}$ and α_{\perp}

$$\mathbf{\hat{o}B} \equiv \left[\sum_{\alpha,\beta} \left(\bar{\theta}_{\alpha} - \theta_{\mathrm{fid},\alpha}\right) S_{\mathrm{tot},\alpha\beta}^{-1} \left(\bar{\theta}_{\beta} - \theta_{\mathrm{fid},\beta}\right)\right]^{1/2}$$

Eggemeier+ 2021

Assess Performance of the Models

 \rightarrow CLEFT and CLPT model seem to outperform the TNS implementations based on the χ^2_{red}

Future Prospects

- In first comparison CLPT and CLEFT model seem to outperform TNS model
- Converge on one TNS implementation \rightarrow Some discrepancies are currently investigated lacksquare
- Explore different classes of models
 - TNS model with A-terms up to 2-loop order
 - CLEFT model from Fourier space (Velocileptors code)
- Once preliminary model comparison done \rightarrow Full cosmological fit
 - Need of emulators as a new P_{lin} is needed for each likelihood evaluation
 - \bullet

Correction terms (e.g. A- and B-terms in TNS) depend on P_{lin} and need to be emulated as well

Plots taken from Taruya+ (2010)

Plots taken from Taruya+ (2010)

TNS (SdIT)

f	[0.2,1.4]
b_1	[0.5,3.5]
b_2	[-10,10]
$\sigma_{\!\scriptscriptstyle \mathcal{V}}$	[0,10]
$lpha_{\parallel}$	[0.5, 1.5]
$lpha_{ot}$	[0.5, 1.5]

CLPT

[0,2]
[-0.5,3]
[-70,70]
[0,100]
[0.5, 1.5]
[0.5, 1.5]

CLEFT

$\int f$	[0.2 , 1.4
$b_1 - 1$	[-0.5,2
$2(b_2 - 4/21(b_1 - 1))$	[-10,10
b_{s^2}	[-10,10
$lpha_{\xi}$	[-20,10
$10 \alpha_v$	[-60 , 12
α_{σ}	[0,100
α_{\parallel}	[0.5 , 1.5
α_{\perp}	[0.5 , 1.5

Simulation Cosmology

Ω_m^0	Ω_c^0	Ω_b^0	h	n_{s}	A_s
0.319	0.27	0.049	0.67	0.96	2.11065×10^9

