Introduction a l'optimisation
Hadrien Grasland 2022-10-25

17120

I Etape 0 : Qualite logicielle

* Toute modif d'un code peut introduire des erreurs...
— ..et un code optimisé tend a étre moins intuitit/clair

* Précautions de base
- Gestion de version (1 code qui marche = 1 commit)
— Tests, si possible...

» Sous-ensemble rapide (~secondes)
» Simples a exécuter (1 commande)
» Automatisables (intégration continue)

2/20

I Etape 1 : Goulot d'etranglement

* Quelle est |la ressource matérielle qui limite I'exécution ?

- Haut niveau : CPU (utilisateur/0S), stockage, réseau, GPU
- Bas niveau : ALUs int/FP, debits, latences, caches...

» Ce n'est pas forcément facile de trouver la réeponse*

* Les outils & méthodes sont specialisés pour une ressource

— Sice nest pas la ressource limitante, résultats sans intérét
- Dans la suite, je vais supposer que c'est le CPU

* Je termine actuellemnt un bouquin de >100 pages A4 sur 'analyse de I'utilisation CPU... 3/20

I ...au sein d'une application

* Important de savoir dans quel code on passe son temps

— Sion fait aller T00x plus vite une fonction qui prend 1 % du
temps, on n'a gagneé que 0,99 % de temps d'exécution...

- Loptimisation a un coUt humain, donc utile de la cibler

» Approches pour étre fixe

- Simple minutage hiérarchique (main() — sous-fonctions...)
- Logiciels dédiés (VTune, perf, callgrind...)

41720

I Etape 2 : Etat de l'art

» Chercher des sous-problemes classiques dans |le code
— Algebre linéaire, transformee de Fourier, convolution...

» Réutiliser |le travail des autres sur ces problemes
- Bibliotheques deja écrites
— Publications algorithmiques

* Articles scientifiques
* Livres de maths appliquéees
 StackQOverflow, blogs...

5/20

I Etape 3 : Optimisations « haut niveau »

» Lalogique générale est-elle optimale ? Cf mantras de Gregg :
Dontdo it

Do it, but don't do it again

Do it less

Do it later

Peu applicables en calcul batch!

N o oW

6/20

https://www.brendangregg.com/methodology.html

I Etape 4 : Organisation des donnees

* Souvent, un code limite par « le CPU » est limité par la RAM

» Raison : Asymetrie puissance de calcul vs déebits de données
* Prenons le CPU Intel Xeon Silver 4210 utilisé sur MUST*
- Puissance de calcul : 3,5.10" calculs en double (f64)/sec

- Debitmax RAM : 1,2.10"" octets/sec = 1,4.10"° t64/sec

- Donc il faut 249 calculs par flottant double précision
échange avec la RAM pour ne pas étre « memory-bound » !

* Je mets en annexe le calcul si vous voulez le refaire pour votre CPU favori 7120

I De I'importance des caches

» Peu de programmes font 50 calculs par flottant lu ou ecrit

» Solution : tirer au mieux parti des mémoires cache
(= petites mémoires rapides intégrées au CPU)

* Exemple du Xeon Silver 4270 de MUST* :

| 1d : 32 ko/coeur, débit (2+1)x64 octet/cy = 422 Go/s/coeur
|2 .1 Mo/coeur, débit 64 octet/cy = 140 Go/s/coeur

| 3: 14 Mo partages, debit 64 octet/cy/coeur comme L2

Donc il faut juste faire 1 calcul/lecture L1d (ou 2/écriture)

* Ces spécifications varient peu d'une génération CPU a l'autre 8/20

I Propriétés des caches x86 (Intel, AMD)

« Automatiques (chaque lecture RAM passe par L3, L2, L1d)

* Travaillent sur des blocs alignés de 64 octets
- Grouper les données par utilisation (localité spatiale)

* Amener de nouvelles donnees = supprimer les anciennes
- Réutiliser rapidement une donnée (localité temporelle)
* Associativité limitée
— Attention aux acces a des adresses mémoires separéees par
une grosse puissance de 2 (ex : lignes d’'un tableau 2D)

9/20

I Et la latence ?

» Parfois, ce n'est pas le débit qui limite, mais la latence
(= temps pour récupérer une donnée)
* Sujet plus complexe, mais la stratégie generale est de...

— Rester dans les niveaux les plus rapides de cache
- Eviter les acces indirects (ex : tableau de tableaux)
- Globalement, réduire la longueur des chaines doperations

10/ 20

I Etape 5 : Complexite de la logique

* Les instructions conditionnelles (if, switch, etc) ont un co(t

_e CPU ne peut en executer qu'une par cycle
| doit prédire la condition, 'erreur colte cher (15-20 cy!")
Donc en avoir peu + conditions homogenes @ boucles

|y a des techniques pour en utiliser moins (« branchless »)

* Les méthodes virtuelles (programmation objet) ont des codts

- Empéchent l'inlining — Latence, instructions en plus

- Ok a haut niveau, mais a bannir du coeur du calcul

[1] Mesures sur CPU Intel « Haswell » : https://www.7-cpu.com/cpu/Haswell.html 11720

https://www.7-cpu.com/cpu/Haswell.html

I Etape 6 : Efficacité du calcul scalaire

» Ordre de grandeur du cout d'opérations flottantes :
-~ ADD, SUB, MUL, FMA (a*b+c) : 0,5 cycles*
- DIV, SQRT : 3-4 cycles (6-8x plus lent)
- EXP LOG : =5-6 cycles (=10-12x plus lent)
- SIN, COS: =210-11 cycles (=20-22x plus lent)
- ATAN : =22 cycles (=44x plus lent)

» Conseqguences : Restez simples, réutilisez vos inverses, et
rappelez-vous de vos identités trignonometriques !

* Le CPU peut exécuter deux opérations de ce type par cycle, hors quelques exceptions 12/ 20

I Etape 7 : Vectorisation

 Bonne nouvelle : 1 instruction CPU travaille sur N données

- 2 xf64 ou 4 x f32* avec SSE (tous les CPUs x86 modernes)
- 4 xf64 ou 8 x 32* avec AVX (~80-90 % des CPUs de WLCG)

* Mauvaise nouvelle : C'est pas simple a utiliser

- Restreint a des opérations « simples » (ADD, FMA, ...)

— On doit vraiment faire la méme chose pour chague donnee
- Tres sensible au rangement des données en mémoire

— Pas si facile d'étre performant ET portable

* On voit qu'il est intéressant d'utiliser la simple précision la ou c’est possible : calcul vectoriel 13/20
2x plus rapide doublé d’'une réduction 2x de la bande passante mémoire, empreinte cache...

I Approches pour vectoriser

* Sous-traiter a quelqu’un d’autre (bibliotheques vectorisées)

Ecrire le code de sorte que le compilateur le fasse (difficile)
e Utiliser directement SSE, AVX (difficile, non portable)

» Couche d'abstraction (recommandé pour nouveaux calculs)

- Approche 1 : Extension de compilateur (clang + GCC)
- Approche 2 : Bibliotheque (MIPP, xsimd, Vc, eve, std::simd...)

14/ 20

I Etape 8 : Parallelisation

» Rarement necessaire en HEP car souvent déja fait pour nous
— On ne doit pas battre le sequentiel, mais N evts en parallele
— Si ¢a tourne déja Nx plus vite, pas/peu de gain a attendre !

* Seulement pertinent pour économiser une ressource partageée
- Cache L3
— Capacite & débit RAM
- Stockage, réseau...

 Pas si simple (/I\ colts + correction de la synchronisation)

151720

I Résume du plan d'action

0.Avoir une infra de qualite logicielle solide
1.Vérifier ce qui limite les perfs

2. Reéutiliser du code et des algos existants
3.Rendre 'algorithme plus intelligent

4. Bien ranger ses donnees

5.Simplifier la logique

6.Simplifier les opéerations

/. Vectoriser les calculs

8. Paralléliser si necessaire 612

Merci de votre attention !

I Calcul puissance de calcul standardisee

» Produit de plusieurs specifications: exemple Xeon Silver 4270

- Nombre de coeurs: 10
- Fréquence «base»: x2,2 GHz

- Largeur max
vectorisation 64 : X 512/64 (AVX-512)
- FMASs par cycle X T

- Opérations par FMA : x 2 (par définition du FMA = a*b+c)
= 352 GFLOP/s

18 /20

https://ark.intel.com/content/www/us/en/ark/products/193384/intel-xeon-silver-4210-processor-13-75m-cache-2-20-ghz.html

I Calcul bande passante max RAM

* Exemple pour le Xeon Silver 4210

- Nombre de canaux mémoire du CPU :
— Donnees transférées par cycle RAM :
- « Fréquence DDR» (ex : DDR4-2400) :

» Double précision = 64 bits = 8 octets :

6

x 8 octets (DDR)
X 2400 MHz
=115,2 Go/s

/ 8 octets
= 14,4 G f64/s

19720

I Et les GPUs dans tout ca ?

* ||y a de bonnes spécifications techniques sur Wikipedia EN

- Nvidia : https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

— AMD : https:/en.wikipedia.org/wiki/List_of _AMD_graphics_processing_units

 Prenons la Nvidia A100 utilisée sur MUST :

Puissance calcul 164 :9,7.10'? opérations f64/sec
Debit VRAM : 1,6.10" octets/sec = 1,9.10" f64/sec

Donc il faut 250 opérations par f64 echange avec la VRAM

20/ 20

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

