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Plan

Now:

● Basic physics of gravitational waves
● Neutron stars as sources of gravitational waves
● Gravitational wave detectors
● Analysis of gravitational wave data

This afternoon: tutorials in form of Jupyter notebooks. Can be used:

● Online via Google Colab (hopefully this works!)
● Docker image where (almost) everything works offline

(problem: this image is on my laptop, and you do not have it)
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Basic physics of gravitational waves
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General relativity review
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Metric tensor
(distance between events)

Ricci tensor
Ricci scalar

Stress-energy tensor
(energy, matter, pressure)

Einstein’s field equations

4-dimensional spacetime 
with coordinates and events
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x=4

Spacetime interval

Curvature
(gravity)
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GR review: flat spacetime
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Empty spacetime everywhere → → EFE satisfied by the Minkowski metric:

(Cartesian coordinates)

(spherical coordinates)

All curvature quantities vanish everywhere, e.g.                   → No gravity → Special relativity

Solution adequate for describing most (not all!) physics in the solar system.



GR review: Schwarzschild solution

6

Static spacetime (time invariance) + spherical symmetry → Schwarzschild metric

Characteristic scale set by the Schwarzschild radius

Solution adequate for describing physics in proximity of an object that is
● non-rotating
● electrically neutral

(non-spinning black hole, neutron star, main sequence star, planet…)



Gravitational waves in GR
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Minkowski spacetime with a small perturbation

Introduce coordinates xμ satisfying the harmonic gauge condition

d’Alembert operatorThe EFE can be linearized and written as

→ The perturbation satisfies the equation of waves traveling at the speed of light.



Gravitational waves in GR

8

We can decompose the perturbation field in plane waves, which look like

Polarization tensor satisfying
the transverse and traceless
conditions

Two degrees of freedom,
“plus” and “cross” polarizations

Null wave vector With the appropriate choice
of coordinates we can set



Emission of gravitational waves
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Quadrupole formula

Inertia tensor of a source Quadrupole moment

Distance to the source
Projection operator
to extract the TT part
orthogonal to the 
viewing direction

Energy loss (luminosity)

More terms in general: mass current quadrupole, mass octupole… (higher-order modes)



Neutron stars as sources
of gravitational waves
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Neutron stars
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Observations:
● Supernova remnant sites
● X-ray binaries
● Pulsars (radio, X-ray, γ-ray, optical)
● Gravitational waves



Neutron stars in binary systems
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PSR 1913+16, the “Hulse-taylor pulsar”
PSR J0737−3039, the “double pulsar”
GW170817
…

NS-NS (BNS), NS-BH

http://www.youtube.com/watch?v=tZWi4G4a7ZE


Inspiral of a binary system
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Keplerian system of two point masses Time-dependent
quadrupole moment

Energy balance

Quadrupole formula

Expand both sides in power series of v/c
and truncate at some order:

(post-)Newtonian inspiral

→ Energy loss → Orbital decay

Amplitude/phase vs time

Approximate waveform
h(t) ~ A(t) exp{iψ(t)}

More details:
Peters and Mathews, Gravitational Radiation from Point Masses in a Keplerian Orbit, 1963
Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, LRR 2014

https://doi.org/10.12942/lrr-2014-2


Complete compact binary coalescence waveform (BBH)
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Complete compact binary coalescence waveform (BBH)
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GW170817’s inspiral
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Post-Newtonian phase in the frequency domain
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Correspondence between time and frequency 
(stationary phase signal) implies:

Spin effects

Leading finite-size (deformability) effect
Newtonian
(“zero pN”)
term

Leading mass dependence: chirp mass



Effect of the spins of the inspiraling objects
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Components along the orbital angular momentum 
contribute only to higher-order terms in the pN 
series.

→ Affect the duration of the inspiral
(orbital hangup effect)

Components in the orbital plane alter the 
orientation of the momenta.

→ Orbital precession with time scale

→ Slow amplitude modulation of the inspiral

Post-Newtonian
evolution of the
orbital angular
momentum

(Apostolatos et al 1994)

Spin-orbit coupling

Spin-spin coupling

Radiation reaction



Effect of component spins
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Matter effects in neutron star mergers
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Put a neutron star in an external field
→ Quadrupole moment is induced

Dimensionless tidal deformability

Leading order
post-Newtonian
tidal correction:

related to the structure
of the neutron star

Deformation as the objects approach → Orbital energy loss → Faster inspiral



Matter effects in neutron star mergers
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Black hole

Neutron star

Tidal tail Accretion disk

Tidal disruption



Practical calculation of a CBC waveform
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LALSimulation: software library with “approximants”, functions that return h+, hx given the source 
parameters.

Part of a larger library called LALSuite.

Used by most (all?) data analyses involving CBCs, both to search and to characterize signals.

Code: https://git.ligo.org/lscsoft/lalsuite

API documentation:
● https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/index.html 
● https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group__lalsimulation__inspiral.html

In practice I never use LALSimulation directly - I use it from PyCBC (more on this later)

https://git.ligo.org/lscsoft/lalsuite
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/index.html
https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group__lalsimulation__inspiral.html


Practical calculation of a CBC waveform

23

Typical approximants I am familiar with:

● TaylorF2 - Inspiral-only, frequency domain
● SpinTaylorT* - Inspiral-only, time domain
● SEOBNRv4_opt - Inspiral-merger-ringdown (IMR, good for BBH), time domain
● SEOBNRv4_ROM - IMR, frequency domain
● SEOBNRv4HM - IMR, time domain, with higher-order modes
● IMRPhenomPv2 - IMR, frequency domain, with orbital precession
● *_NRTidalv2 - Extension of simpler models to add tidal effects



Isolated, rotating and deformed neutron stars
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Equatorial ellipticity
(“mountain”)

Results in GW amplitude at frequency 2frot:

Energy loss

Results in a 
spindown

More details:  Riles, Searches for continuous-wave gravitational radiation, LRR 2023

https://doi.org/10.1007/s41114-023-00044-3


Radiation from mass-current quadrupole (r-) modes
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More details:  Riles, Searches for continuous-wave gravitational radiation, LRR 2023
Movies: https://research.physics.illinois.edu/CTA/movies/r-Mode/ 

Fluid modes supported by rotation; characteristic GW amplitude

Associated
spindown

https://doi.org/10.1007/s41114-023-00044-3
https://research.physics.illinois.edu/CTA/movies/r-Mode/


Stochastic foregrounds
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At this point, we may want to have a break



Gravitational-wave detectors
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Why would we measure gravitational waves?
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≲ 10-21

r  ≳ 100 Mpc

Mass ~ 10 MSun
Velocity ~ c

Mass quadrupole Q



GW detectors: general principle
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Nearby
geodesics

xμ

xμ+𝛿μ

Long wave / low frequency (“nearby”)
Weak perturbation

Change in proper length
along direction ui

Proper
length

Time-dependent source →



GW detectors: general principle
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Phase shift

Mirror 1’s
geodesic

Beam 
splitter’s
geodesic

Mirror 2’s
geodesic

ui
vi

Light
beam



GW detectors: response to a plane GW
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Antenna pattern functions,
beam pattern functionsFunctions of instantaneous relative orientation of source

and detector, and instantaneous signal frequency.

Time-independent if Tsignal ≪ ~1 hr (nonrotating Earth).

Freq-independent if λsignal ≫ L (long-wave/low-frequency approximation).

Various software libraries allow you to calculate these functions (e.g. LALSuite, PyCBC).



GW detectors: response to a plane GW
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Antenna pattern in the low frequency limit



GW detectors: Michelson-Fabry-Perot interferometer
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3–4 km
resonant cavity

Digital data
acquisition

and recording

GW strain
time series

“h of t” (s(t) here)

Calibration to h(t)
Noise removal

…

Astrophysical
analyses

Mirror

Beam 
splitter

Photodetector

Incoming 
GW



GW detectors: the present network
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GW detectors: the present network
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Virgo

LIGO Livingston

LIGO Hanford

KAGRA



GW detectors: the present network
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GW detectors: recent and near-future observing runs
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GW detectors: data and results
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● Rapid alerts:
○ General Coordinates Network: https://gcn.nasa.gov/ 
○ GraceDB: https://gracedb.ligo.org 

● GW Transient Catalog (GWTC) papers
● GW Open Science Center (GWOSC) which includes h(t): https://gwosc.org/ 

This afternoon we will use some data from GWOSC.

https://gcn.nasa.gov/
https://gracedb.ligo.org
https://gwosc.org/


Analysis of gravitational-wave data
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What do the data of a GW detector mean?
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Detector noise that is 
easy to predict or model. 
Usually fundamental, and 
determines the sensitivity 

of the detector.

Detector/environment noise 
that is hard or impossible to 

predict or model. Usually 
technical, and determines 

the quality of the data.

Superposition of all gravitational-wave 
signals of the form given on slide 32, 

each with its own vector of parameters 
describing the source and possibly larger 
structures, or even the whole Universe.

Continuous time series of spacetime strain measurement, sampled at ~10 kHz, contaminated with noise:



What is “easy” noise?
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Stochastic process: only its long-term statistical properties are well defined, i.e.

Probability distribution Autocovariance or power spectral density

Quasi-Gaussian process

(time domain)

(Fourier domain)

Quasi-stationary process: W(t) or S(f) time-dependent
White process: S(f) = const.

Typical sources: thermal noise and laser quantum (shot) noise.

Can only discover/study a signal h if it is “louder than noise” (to be defined soon…)
→ neasy is the ultimate limit to the sensitivity of a GW detector.



What is “easy” noise?
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Gaussianity → For N time-domain samples of neasy (here n for simplicity) we can write

Stationarity → Covariance matrix 𝚺 
is constant across diagonals.

In the Fourier domain the covariance becomes (almost) diagonal



What is “hard” noise?
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Potentially an arbitrary superposition of 
stationary, nonstationary, deterministic, 
nondeterministic, transient, continuous signals, 
whose origins may be known or unknown.

Any component that can be understood or 
modeled can be subtracted from the data, and 
hence drops out of this classification!

The rest can only be studied by running the 
detectors, observing how the noise behaves 
and trying to track down its origin in the 
detector (noise hunting).

Different types of “hard” noise may only be a problem for specific analyses.



Spectral density of GW data
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Hard: 50 Hz power grid

Easy:
laser shot noise

Hard:
suspension 
thermal noise

Easy: coating
thermal noise

Amplitude
spectral
density

Not to be confused
with the power
spectral density



Time-frequency representation of GW data
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“Easy” noise

“Hard” noise

Astrophysical 
signal

“Signal
energy”

“Excess
power”

“Local
variance”



General workflow of gravitational-wave astronomy
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Detector design and construction: build the machines that will get you s(t)

● Make neasy as small as possible.
● Make nhard much smaller than neasy so we can forget about it.

Observing runs: obtain s(t)

● Run the detectors in order to obtain s(t) for periods as long as possible.
● Understand how the detectors are behaving and learn how to improve them.

Data analysis: derive scientific knowledge from s(t)

● Identify the presence of each signal hi (without being fooled by n) and measure 
its parameters, i.e. characterize each individual source.

● Use the information for science: census of objects in the Universe, 
multimessenger astronomy, cosmology, fundamental physics…

Competing
activities!



Bayesian formalism
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Bayes’ theorem

Evidence (marginalized likelihood)

Posterior
distribution

Likelihood
function

Prior distribution

Probability of a statement A

Posterior odds Bayes factor Prior odds

Data d, parametric model M

Data analysis tasks

● Model selection:
estimate the posterior odds

● Parameter estimation:
estimate the posterior distribution



Direct application of the Bayesian formalism - “Ideal” analysis
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Calculate the evidences for the following models:

● Model 0: data contain only noise
● Model 1: data contain noise and one signal
● …
● Model n: data contain noise and n signals

We can then do model comparison and parameter estimation for the n signals.

Hard!!!*

● nmax >> 1
● m-dimensional parameter space for a single signal
● Must integrate over nm >> 1 dimensions
● Likelihood is an extremely complicated function 

* But people are trying 🤫



Maximum likelihood formalism
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For the first identification of an unknown GW signal, it is easier to solve a different problem:

Maximum
likelihood
ratio

Maximum
likelihood
parameter
estimate

Covariance
matrix

Solving the ML problem gives only an approximate answer to the original problem.
In many cases not a very good one.

A: noise + signal hypothesis
B: noise only (null) hypothesis



The signal + Gaussian noise likelihood function
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Assume known noise PSD → The only free parameters are signal parameters

ML ratio becomes simpler in log:

Whittle likelihood

Recall our data model                            with quasi-Gaussian noise

with the noise-weighted inner product
between discrete-time signals a and b

(Note that I am not being very
careful with constant factors
in these expressions)



Matched filtering and signal-to-noise ratio
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Want to maximize                                                       . Re-express the signal as

Then maximizing over a
has a closed-form solution:

with the (amplitude-maximized)
signal-to-noise ratio (SNR)

Maximizing over an overall
phase shift is also possible if we 
use instead two templates that 
differ by a 90 deg phase rotation:

Template
waveform

Matched filter



Interpreting the signal-to-noise ratio
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Remember that ultimately we are computing the LLR between “Gaussian noise + signal h”
and “Gaussian noise only”. 

How does the SNR behave if there is no signal?

Each <s|h> term is a unit-norm linear filter applied to Gaussian whitened data
→ Normal random variate

→ 𝜌2 distributed as a central χ2 random variate → 𝜌 is on average ~1 far from the signals

Maximize the SNR ↔ Maximize the LLR for Gaussian noise

→ As SNR grows above some SNRmin (typically 4-8) the null hypothesis becomes more and more 
unlikely.

Assuming that the signals are well separated, finding the local maxima of the SNR over the remaining 
parameters will point out the (strongest) signals.
This generally requires a numerical search.



Needles in a haystack: the template bank

54



Needles in a haystack: the template bank
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105-106 templates for CBC searches with LIGO/Virgo/KAGRA



Generation of candidate events
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Livingston trigger
Hanford trigger



“Hard” noise and the SNR
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SNR “proportional to the data”
→ Local fluctuations of the noise will reflect in the SNR
→ Large SNR no longer implies a trigger is astrophysical

Solution: signal-based discrimination statistics
● Time-frequency χ2: check distribution of SNR over frequency
● Autocorrelation χ2: check shape of SNR peak over merger time
● Bank χ2: check shape of SNR peak

over template bank parameters

Common statistical property:
● Distributed like a central χ2 under Gaussian noise

or Gaussian noise + matched signal
● Distributed like a noncentral χ2 under Gaussian noise + mismatched signal



Combining data from different detectors
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Incoherent methods

Solve the ML problem separately for each 
detector.

Identify triggers separately in each detector.

Time coincidence between detectors with a 
coincidence window accounting for the light 
travel time between detectors.

Rank each coincident candidate with an 
incoherent SNR-like quantity

Coherent methods

Solve the full ML problem simultaneously for all 
detectors with a common signal.

Requires exploring a larger search space (e.g. 
sky location).

More correct in principle, beneficial for many 
detectors.



Statistical significance of candidate events
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We have a list of candidate events each with 
a ranking value. But what does it mean?

How often does instrumental noise
produce a candidate event ranked
higher than what I got?
→ False-alarm rate (FAR)

Generate a “null” distribution of ranking 
statistic from a large sample of unphysical 
events:

● By time-sliding data from different GW 
detectors

● By extrapolating the bulk of the ranking 
statistic.

Obtain a map to “look up” the FAR associated 
with a given ranking statistic.

E.g. FAR ≲ 1/100 yr
→ Candidate is unlikely to come from noise



Statistical significance of candidate events
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We have a list of candidate events each with 
a ranking value. But what does it mean?

How probable is a candidate event to be of 
astrophysical origin?
→ P(astro) or p_astro

Construct a model for the rate density of 
signal f(𝛌) and background b(𝛌) candidates 
over the space of candidate parameters 𝛌

0: candidate is certainly of terrestrial origin
0.5: ambiguous origin
1: candidate is certainly astrophysical



Modern implementations of matched-filter searches for CBCs
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“Pipelines” developed by different teams

GstLAL

Time-domain matched filter

MBTA

Multiband matched filter

PyCBC

Frequency-domain matched filter

SPIIR

Time-domain fully coherent matched filter

Online (low latency)

Results available ~10 s after data acquisition.

Used to produce rapid alerts for electromagnetic 
followup observations.

Offline (archival)

Results available hours to weeks after data 
acquisition.

Used for “more careful” analyses, to compile 
ultimate event catalogs like GWTC.

See https://emfollow.docs.ligo.org/userguide/ for 
more info.

https://emfollow.docs.ligo.org/userguide/


Ok, we found a bunch of candidates from the ML search!
What can we infer about their properties?
Back to the original Bayesian problem:

Stochastic sampling methods to “explore” the likelihood, e.g. 
Metropolis-Hastings algorithm

Produce a set of samples (points) in the parameter space of 
the model, drawn from the joint posterior density function.

Marginal posteriors for a specific parameter can be obtained 
simply via histograms.

Challenges: complicated likelihoods (degeneracies), 
convergence (burn in), number of points.

Estimation of source parameters of a candidate signal
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Typical degeneracies for CBC signals: sky location
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Single-interferometer observation:
the data contain no information about
the parameters we are trying to infer,
i.e. the problem is completely degenerate.

Then we just recover the prior distribution.

Two-interferometer observation:
the information about two parameters 
affects the data through a single effective 
parameter (the time of flight between the 
two interferometers in this case).



Typical degeneracies for CBC signals: component masses
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For a low-mass inspiral, the dominant effect
is the chirp mass (leading parameter in the
post-Newtonian expansion).

Trying to infer the component masses produces 
a posterior distribution that follows a line of 
constant chirp mass.

Solution:
● Add higher-order modes to the waveform 

model (add more physics to the model to 
break the degeneracy)

● Improve the detector sensitivity (make the 
higher-order modes more visible)



Typical degeneracies for CBC signals: distance/inclination
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Another case of two parameters producing
a very similar effect in the data:

Solution:
● Add higher-order modes to the waveform 

model (add more physics to the model to 
break the degeneracy)

● Improve the detector sensitivity (make the 
higher-order modes more visible)



Continuous GW signal observed by an interferometer
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Doppler modulation due to Earth revolution Doppler modulation due to Earth rotation

More details:  Riles, Searches for continuous-wave gravitational radiation, LRR 2023

https://doi.org/10.1007/s41114-023-00044-3


Exercises

1. PyCBC tutorials 1-3 from “Gravitational-wave Data Analysis” and tutorial 0 from “Inference”.
2. What does the transverse property of GWs mean in terms of how a detector responds to a 

GW?
3. Explicitly calculate the antenna pattern functions in the low-frequency limit, assuming a 

coordinate system where the x and y axes are defined by the arms of the interferometer.
4. Calculate the response of an interferometer relaxing the low-frequency approximation, and 

assuming a monochromatic GW. For simplicity, only consider a source located directly 
above the interferometer. How does the response vary as a function of frequency?

5. Assume a single computer CPU core takes 10 ms to calculate the SNR for a single CBC 
template and 256 s of data. Assume we have a bank of 5x105 templates. What do we need 
to analyze one year of GW observations in one month?

6. Describe why a template bank to search for CBC signals including masses and spins will 
produce a larger FAR (at a fixed value of the candidate event’s ranking statistic) than a 
similar bank that only includes the masses.

7. Consider a CBC candidate event and its FAR and P(astro). Do you expect a small FAR to 
always be associated with a P(astro) value close to 1? Explain.
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https://github.com/gwastro/PyCBC-Tutorials


Backup
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Multipole expansion of gravitational radiation
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Early-warning detection of a long inspiral
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