Search for T'→ top+H in Dilepton OS Final State Status Report

Di Wang

Group Meeting, Oct. 12th, 2022

10/14/2022

Update from Last Meeting

Correct the transverse mass calculation

$$\bullet \ m_T^H = \sqrt{2*p_T^{ll}*p_T^{MET}*[1-\cos(\delta\phi(\overrightarrow{p_T^{ll}},\overrightarrow{p_T^{MET}}))]} \quad m_T^{T'} = \sqrt{2*p_T^{ll\⊤}*p_T^{MET}*[1-\cos(\delta\phi(\overrightarrow{p_T^{ll\⊤}},\overrightarrow{p_T^{MET}}))]}$$

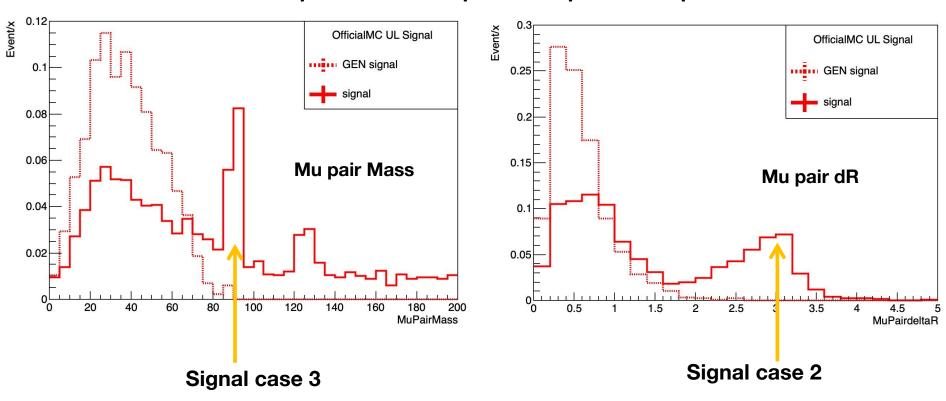
> Refine cut strategy

- Basic cuts: Remove jets number cuts
- Cut0: Mu Pair Mass < 60
- Cut1: $\chi_W^2 + \chi_{top}^2 < 18$ -> Top reconstruction is valid
- Cut2: Higgs Transverse pT > 200 -- > Mu pair Pt + top pt > 350 GeV
- Cut3: Minimal delta R (mu, b jet from top) > 2
- Cut4: delta R (b jet from top, W from top) < 2.5

Main variables?

- top mass & transverse Higgs mass
- > Update Twiki page: All details here!
 - https://twiki.cern.ch/twiki/bin/view/CMS/VLQLepton
- > Update analysis code
 - https://gitlab.cern.ch/fly/fly/-/tree/TPrimeLeptonOS/

General Analysis Strategy


- > VLQ lepton OS channel
 - Final states contains 2 OS leptons and 3 jets
 - case1: T' -> tH; t->Wb->qqb; H->WW->I+I-vv
 - T' is heavy: High pt of decay products
 - A full hadronic top: can be reconstructed
 - 3 jets: High pT & small angular distance
 - Higgs are not be reconstructed due to 2 neutrinos: check transverse mass
 - Higgs has spin0: M(II) is small & 2 leptons are close to each other
 - b jet and lepton are from different decays: a relatively big angular distance
 - case2: T' -> tH; t->Wb->blv; H->WW->qqlv
 - T' is heavy: High pt of decay products
 - Both top and Higgs can not be reconstructed
 - b and one of the leptons are from different decays: Max(deltaR(bjet, lepton))
 - case3: T' -> tH; t->Wb->qqb; H->ZZ->llqq
 - T' is heavy: High pt of decay products
 - T' can be fully reconstruced!
 - Low expected signal events due to low BR of H->ZZ
 - Study case1 muon channel first

General Analysis Strategy

- > Background for VLQ OS lepton channel
 - Background from other processes
 - Main background: TTbar->WbWb->I+I-vv
 - Large cross section & has 2 OS leptons
 - TTbar are not from a heavy mother particle: low pt of decay products
 - For one top, a b jet and a lepton are from the same decay
 - 2 leptons in final state: not supposed to see a top peak from jets
 - TTH, TTZ, TTW
 - Cross sections are not very big
 - Have very similar final states to signal process
 - Not from a heavy mother particle: low pt of decay products
 - TTZ can be killed by lepton mass cut

General Analysis Strategy

- > Background for VLQ OS lepton channel
 - Other signal cases
 - signal case 2: T' -> tH; t->Wb->blv; H->WW->qqlv
 - leptons from different decays: High mu pair mass& big dR(I,I)
 - signal case 3: T' -> tH; t->Wb->qqb; H->ZZ->IIqq
 - leptons from Z: Z peak on lepton mass plot

MC Samples

- > Take all 3 year signal MC to increase statistics
- > All samples are UL v9

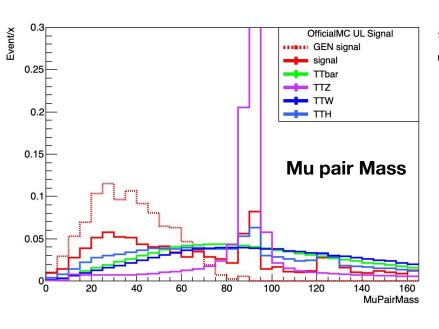
Processes	Channel	MC Samples	Year (UL)	Cross- Section(fb)
Signal	Т'ТоТН	/TprimeBToTH_M-700_LH_TuneCP5_13TeV-madgraph_pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOAODSIM	2018	89
	Т'ТоТН	/TprimeBToTH_M-700_LH_TuneCP5_13TeV-madgraph_pythia8/RunIISummer20UL17NanoAODv9-106X_mc2017_realistic_v9-v1/NANOAODSIM	2017	89
	Т'ТоТН	/TprimeBToTH_M-700_LH_TuneCP5_13TeV-madgraph_pythia8/RunIISummer20UL16NanoAODv9-106X_mcRun2_asymptotic_v17-v1/NANOAODSIM	2016	89
	Т'ТоТН	/TprimeBToTH_M-700_LH_TuneCP5_13TeV-madgraph_pythia8/RunIISummer20UL16NanoAODAPVv9-106X_mcRun2_asymptotic_preVFP_v11-v1/NANOAODSIM	2016APV	89
Background	TTTo2L2Nu	/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunlISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOAODSIM	2018	87315
	TTW	/ttWJets_TuneCP5_13TeV_madgraphMLM_pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOAODSIM	2018	610
	TTZ	/ttZJets_TuneCP5_13TeV_madgraphMLM_pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOAODSIM	2018	770
	ТТН	/ttHToNonbb_M125_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOAODSIM	2018	271

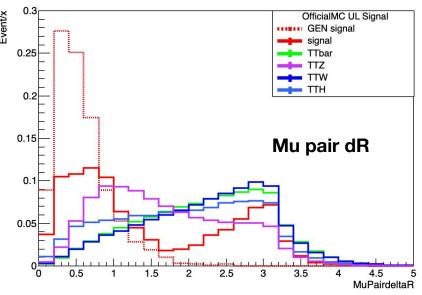
Basic Cuts

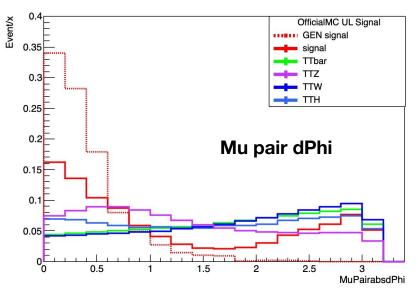
- Basic cuts
 - Cuts for muons
 - Two opposite sign muons
 - Tight ID cut: Muon_tightId
 - Pt(mu) > 20GeV
 - |eta| < 2.4</p>
 - Tight isolation cut: goodMuons_miniPFRellso_all < 0.05
 - Impact parameter Significance cut: Muon_sip3d < 3</p>
 - Cuts for jets
 - Tight jet ID cut: Jet_jetId: 6
 - Pt(jet) > 30GeV
 - |eta| < 2.5
 - Loose B tag: goodJets_btagDeepFlavB>0.049

$$\epsilon = \frac{N(GENselection \cap Cuts)}{N(GENselsction)}$$

$$Purity = \frac{N(GENselection \cap Cuts)}{N(Cuts)}$$

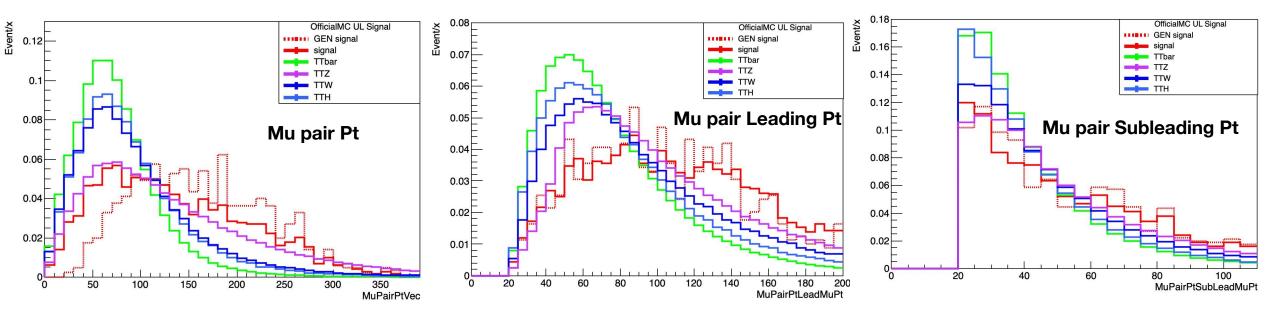

Should we also cut on MET_pt?


Cuts	N_Signal	N_GENSignal	signal efficiency	signal purity	N_TT	N_TTW	N_TTZ	N_TTH	S(GEN)/B
Basic cuts	33.35	9.48	100%	28%	296960	629	1846	455	0.003%


After Basic Cuts

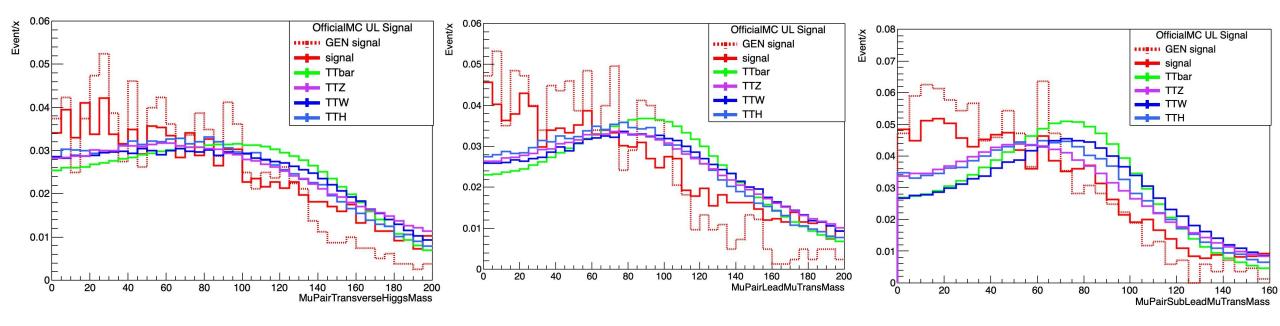
> Higgs has spin0:

- M(II) is small
- 2 leptons are close to each other
- M(II), dR(I, I), dPhi(I,I) are related variables



After Basic Cuts

- > T' is heavy:
 - High pt decay products
 - leptons are close to each other
 - Make vector sum of Mu pair pt a good variable

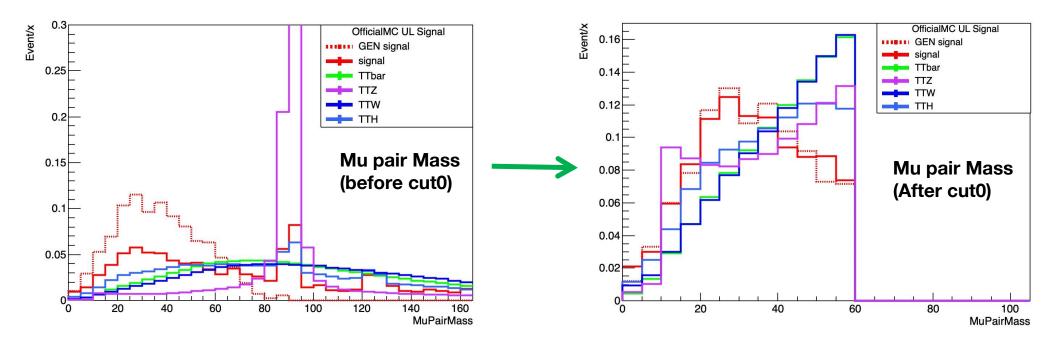


After Basic Cuts

> Higgs can not be reconstructed: Check transverse mass

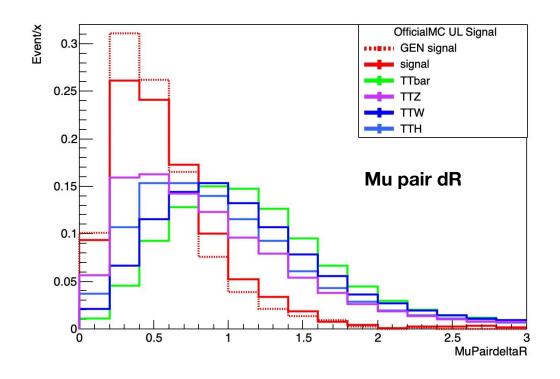
$$m_T^H = \sqrt{2 * p_T^{ll} * p_T^{MET} * [1 - \cos(\delta\phi(\overrightarrow{p_T^{ll}}, \overrightarrow{p_T^{MET}}))]}$$

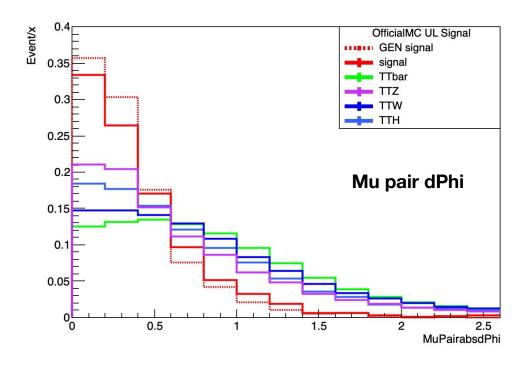
$$m_T^l = \sqrt{2 * p_T^{l} * p_T^{MET} * [1 - \cos(\delta\phi(\overrightarrow{p_T^{l}}, \overrightarrow{p_T^{MET}}))]}$$


Higgs transverse mass

Lead Mu transverse mass (mu with higher pt)

Sublead Mu transverse mass (mu with higher pt)

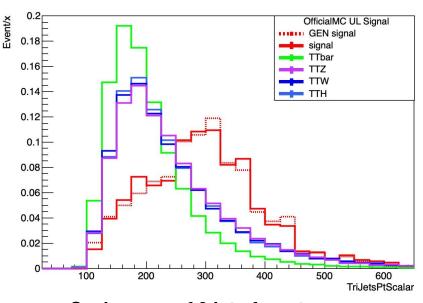

Cut0: Mu pair mass < 60GeV


- Cut0: Mu pair mass < 60GeV</p>
 - Remove TTbar& signal case2: leptons from different top decays have bigger mass
 - Remove TTZ& signal case3: remove the Z peak

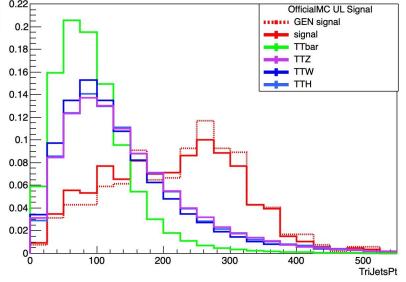
Cuts	N_Signal	N_GENSignal	signal efficiency	signal purity	N_TT	N_TTW	N_TTZ	N_TTH	S(GEN)/B
Basic cuts	33.35	9.48	100%	28%	296960	629	1846	455	0.003%
Basic cuts&& cut0	13.28	8.38	89%	63%	64179	102	145	132	0.013%

- > Mu pair dR and dPhi from signal looks similar to background after cut0
 - Cause Mu pair mass, dR and dPhi are related to each other

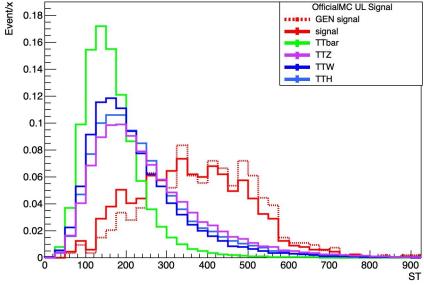
Cut1: Top reconstruction is valid


- > Cut1 is the preparation of the following jet-related cuts
 - No cut on Chi2 values
 - imply jet number requirement: At least 3 jets, includes 1 b jet
- > Find 3 jets and make a top candidate
 - 1st loop for W reconstruction: select 2 jets with minimal χ_W^2
 - Remove 2 jets from W
 - 2nd loop for top reconstruction: select 1 b jet with minimal χ^2_{top} (loose b tag)

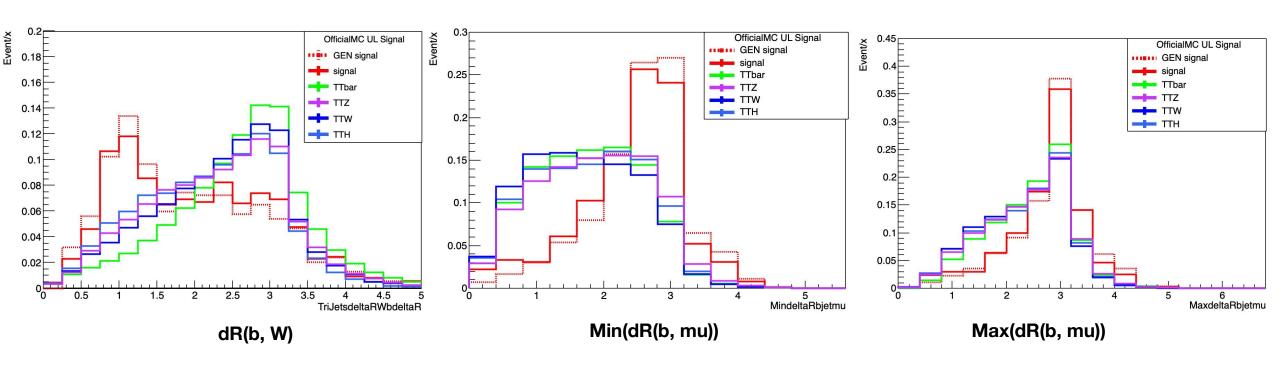
$$\chi_W^2 = \frac{(M_W - M_{jj})^2}{\sigma_W^2}$$
 $\chi_{top}^2 = \frac{(M_t - M_{bjj})^2}{\sigma_t^2}$


Sigma & mass are fixed values from observation

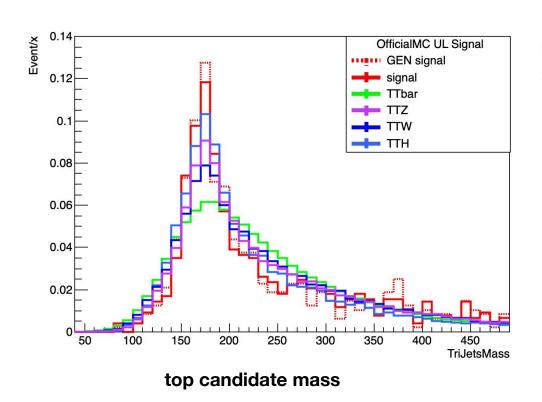
Cuts	N_Signal	N_GENSignal	signal efficiency	signal purity	N_TT	N_TTW	N_TTZ	N_TTH	S(GEN)/B
Basic cuts	33.35	9.48	100%	28%	296960	629	1846	455	0.003%
Basic cuts&& cut0	13.28	8.38	89%	63%	64179	102	145	132	0.013%
Basic cuts&& cut0&& cut1	9.66	6.01	62%	64%	44925	79	120	110	0.013%

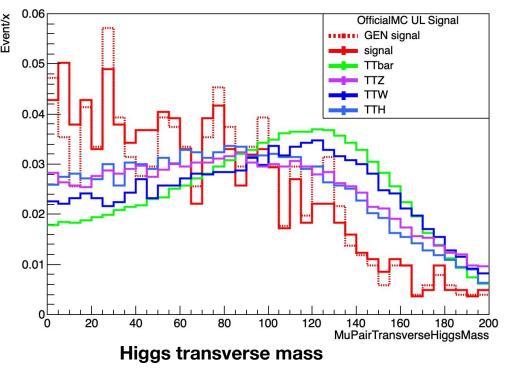

- > Top candidate pt is high
 - Decay from heavy T'
 - 3 jets are close to each other cause they are from the same top
- > Top candidate pt + Mu pair pt is even higher
 - Both of them are from T'

Scalar sum of 3 jets from top



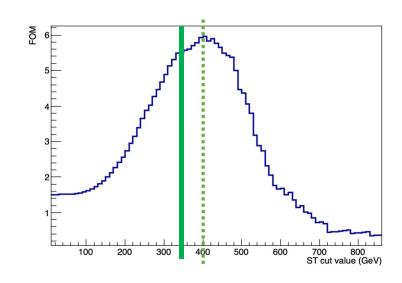
Vector sum of 3 jets from top (pt of top candidate)

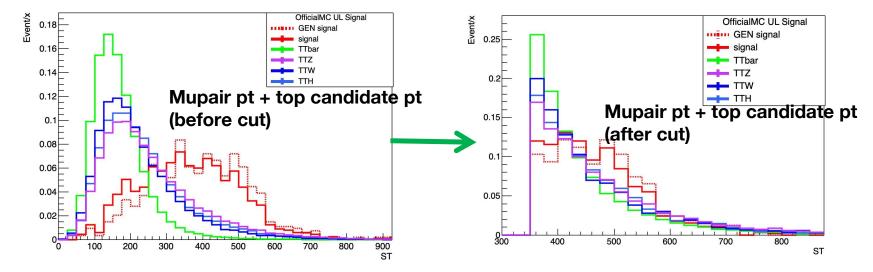



Mupair pt + top candidate pt

- > Angular variables describe substructure of T' decay
 - b and W are from a same top: small dR
 - b and mu are from different decays
 - Min(dR(b, mu)): In TTbar b and mu are from the same top decay
 - Max(dR(b, mu)): In both TTbar and signal, b and mu are from different decays

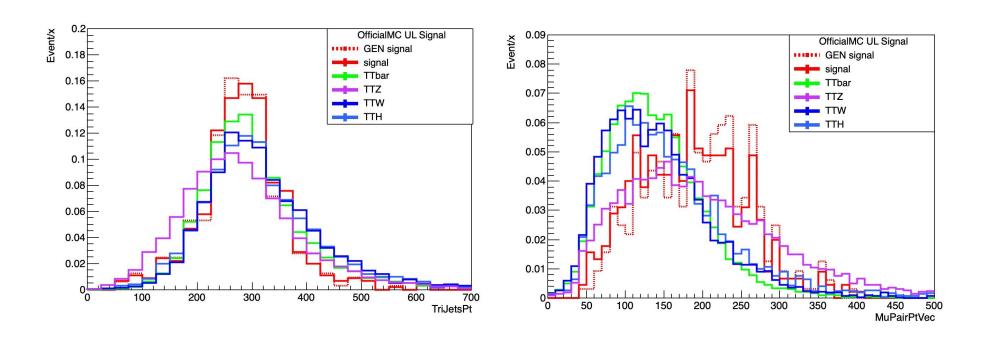
- > A top peak in 3 jets mass plot
 - No clear top peak in TTbar: both two tops decay to leptons
 - Top peaks exists in TTH, TTZ, and TTW: similar final states to signal
- > Higgs transverse mass
 - Most signl values are lower than 125GeV cause they came from Higgs

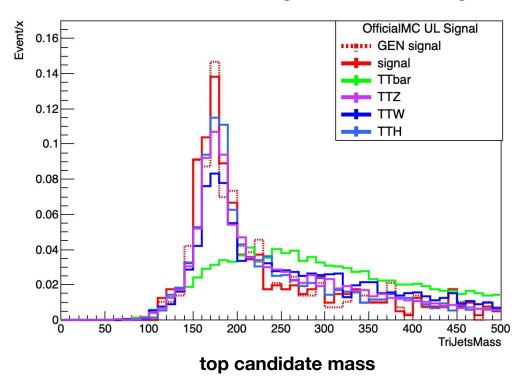


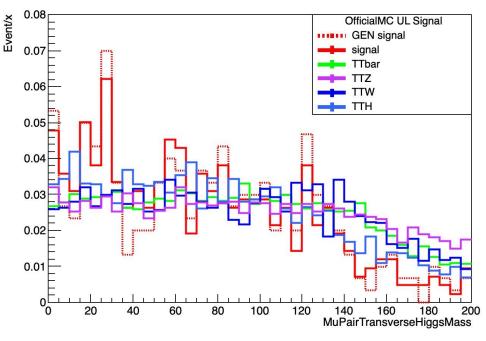


Cut2: Mu pair Pt + top pt > 350 GeV

- > Mu pair and top candidate from T' have high pt
 - Punzi optimized point is 400GeV
 - Take 350 GeV to save more signal

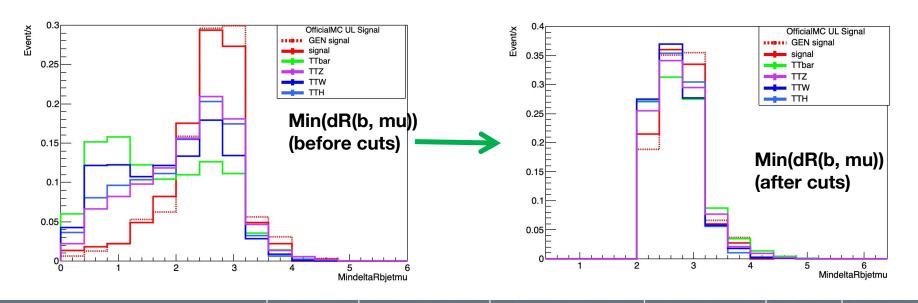

$$FOM = \frac{N_{signal}}{\sqrt{N_{background} + 3/2}}$$




Cuts	N_Signal	N_GENSignal	signal efficiency	signal purity	N_TT	N_TTW	N_TTZ	N_TTH	S(GEN)/B
Basic cuts	33.35	9.48	100%	28%	296960	629	1846	455	0.003%
Basic cuts&& cut0	13.28	8.38	89%	63%	64179	102	145	132	0.013%
Basic cuts&& cut0&& cut1	9.66	6.01	62%	64%	44925	79	120	110	0.013%
Basic cuts&& cut0&& cut1& cut2	5.01	3.57	38%	71%	1163	10	23	16	0.29%

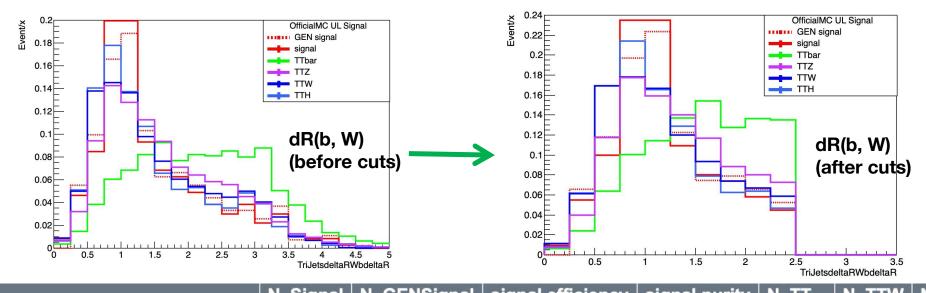
> Top candiadte pt and dimuon pt from signal looks similar to background after cut2

- > Top peak is more clear after cut2
 - Top bump from TTbar is almost gone
 - Top peak from TTW, TTZ, and TTH are still there(hard to remove)
- > Small Higgs transverse mass values from signal
 - Background is almost flat
 - Big fluctuation in signal distribution (need more MC events)



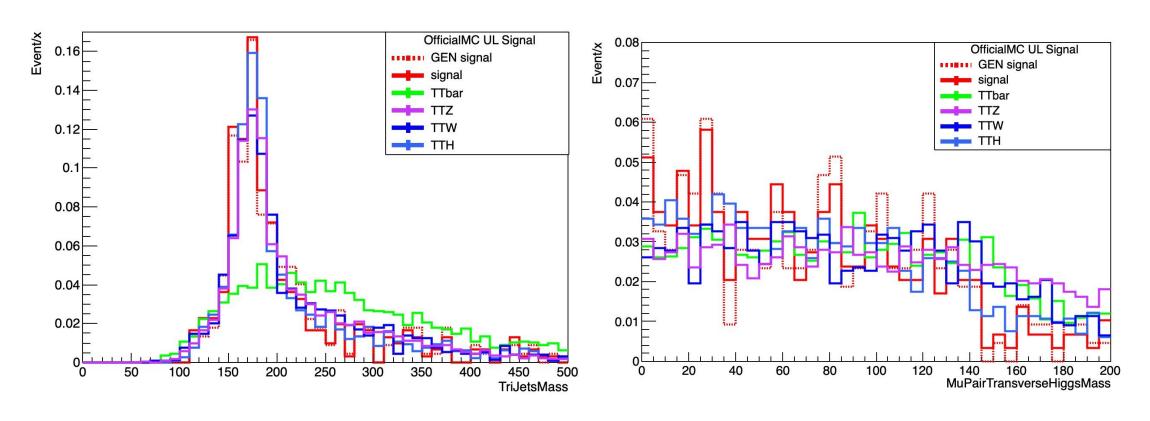
Higgs transverse mass

Cut3: Minimal delta R (mu, b jet from top) > 2

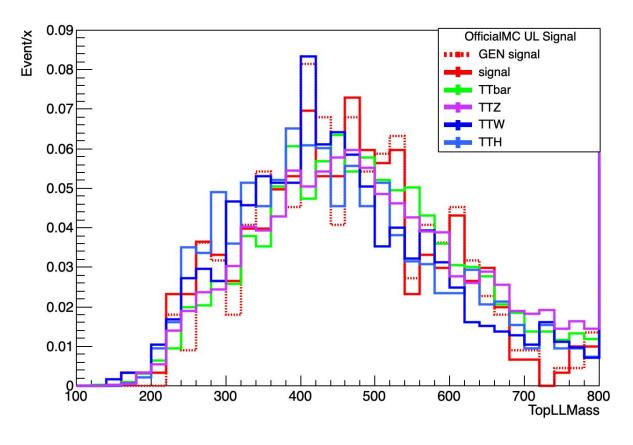

- Signal case1: T' -> tH; t->Wb->qqb; H->WW->I+I-vv
 - Mu and b jet are from different decays
- TTbar: top->Wb->I+b; top->Wb->I-b
 - Mu and b jet are from same decays

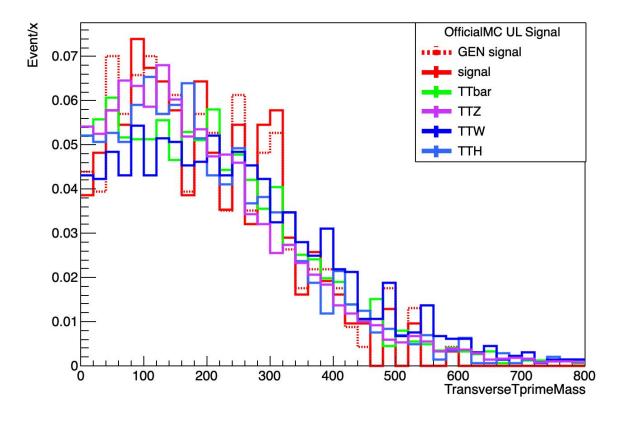
Cuts	N_Signal	N_GENSignal	signal efficiency	signal purity	N_TT	N_TTW	N_TTZ	N_TTH	S(GEN)/B
Basic cuts	33.35	9.48	100%	28%	296960	629	1846	455	0.003%
Basic cuts&& cut0	13.28	8.38	89%	63%	64179	102	145	132	0.013%
Basic cuts&& cut0&& cut1	9.66	6.01	62%	64%	44925	79	120	110	0.013%
Basic cuts&& cut0&& cut1& cut2	5.01	3.57	38%	71%	1163	10	23	16	0.29%
Basic cuts&& cut0&& cut1& cut2&& cut3	4.08	3.01	32%	74%	470	5	14	9	0.605%

Cut4: delta R (b jet from top, W from top) < 2.5

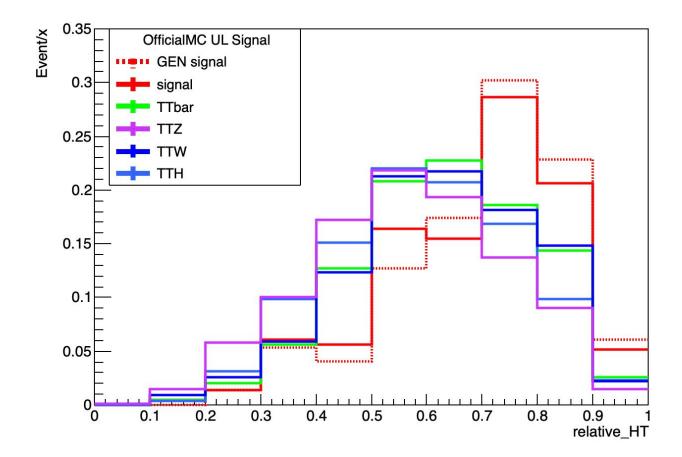

- > b jet and W are close to each other in signal
 - from the same top decay
 - from a heavy mother particle

Cuts	N_Signal	N_GENSignal	signal efficiency	signal purity	N_TT	N_TTW	N_TTZ	N_IIH	S(GEN)/B
Basic cuts	33.35	9.48	100%	28%	296960	629	1846	455	0.003%
Basic cuts&& cut0	13.28	8.38	89%	63%	64179	102	145	132	0.013%
Basic cuts&& cut0&& cut1	9.66	6.01	62%	64%	44925	79	120	110	0.013%
Basic cuts&& cut0&& cut1& cut2	5.01	3.57	38%	71%	1163	10	23	16	0.29%
Basic cuts&& cut0&& cut1& cut2&& cut3	4.08	3.01	32%	74%	470	5	14	9	0.605%
Basic cuts&& cut0&& cut1& cut2&& cut3&& cut4	3.46	2.54	27%	73%	281	4	11	8	0.834%


Main Variable Candidates


- > Take top candidate mass and transverse Higgs mass as main variables?
 - Can not remove top peak in TTZ, TTH and TTW
 - Not sure if Higgs transverse mass is a good one(need more signal events)

Main Variable Candidates


- Take top+II mass or transverse T' mass as main variables?
 - Transverse T' mass is a traditional choice
 - No obvious bump from signal
 - Still need to double check the calculation
 - Maybe loose the cuts a little bit?

Main Variable Candidates

- Take relative HT as main variables?
 - $relative HT = \frac{\sum PT of top candidate jet}{\sum good jet}$
 - A very unusual choice (I don't think it's a smart one)
 - Obvious bump from signal

