

OPTIMED-β (**OPTIcal MicroMEgas Detector for** β **imaging**):

un détecteur Micromegas à lecture optique pour l'imagerie β

1st December 2022

Esther Ferrer Ribas

Different types of cells in a tumor

Large variability among tumoral cells

Biologists questions:

Impact of this hetereogeneity on the distribution of drugs at the cell level

- Drug biodistribution at the single cell level
- ➔ Use of isotopic marking with ³H

Marusyk, Nature Reviews Cancer 12(5) (2012) 323-34

CEA/INSTITUT JOLIOT

Tumoural cells collected from an animal - Tritium tracking

Cellular culture

Cell deposit by microfluidics techniques

CEA/IRAMIS

Tritium activity counting with gaseous detector

CEA/IRFU

Cera context: Detection of ³H with Micromegas

Proposal of using a Micromegas detector

Low energy threshold Good spatial resolution Good background rejection capabilities

For this application: ³H Samples inside the gas volume

CHARGE READOUT VS OPTICAL READOUT

Charge readout

Optical readout

Optical readout of MicroPattern Gaseous detectors (MPGDs) relies on recording scintillation light emitted during electron avalanche multiplication

Advantages

Intuitive pixelated readout with megapixel imaging sensors High spatial resolution Integrated imaging approach Lenses and mirrors allow adjustable magnification and camera positioning

Disadvantages

Limited frame rate Need of CF₄ based gas mixtures

F. Brunbauer

ΟΡΤΙΜΕΟ- β CONCEPT

OPTICAL READOUT SET-UP

RECHERCHE À L'INDUSTRI

HAMAMATSU CMOS CAMERA

e

e

Quantum efficiency

Dark current

Cooling current	Sensor temperature	Dark
Air /pixels/s	- 20 °C	0.016
Watter /pixels/s	- 35 °C	0.006

Photon number resolving

- Micromegas on glass produced at IRFU and at CERN
- Charge readout test in Argon+5%lso: gain above 10⁴ and FWHM 14% (FWHM) energy resolution at 5.9 keV
- Tested in the lab with an ⁵⁵Fe

CHARACTERISATION WITH X-RAYS (II)

• Tested at CERN with X-ray generator

60 s simple background supression and beam profile correction

SOLEIL BEAM TEST 16-18 NOVEMBER 2022

- Hard X-ray branch of METROLOGIE beamline
- Determination of Point Spread Function
- Spatial resolution
- Effect of gas diffussion on spatial resolution
- Detector homogeneity

Test of OPTIMED-BETA detector at hard X branch of METROLOGIE beamline

β DETECTION: IMAGE INTEGRATION

- ➤ Activity measurement limits and dynamic range → Activities: 0.3 Bq and 60 Bq tritiated glucose
- Space between drops : 2 cm 1 cm 5 mm
- 60 Bq drops positions are well assessed
- 0.3 Bq drops hardly visible

β DETECTION: CLUSTERING

- > Both 60 Bq and 0.3 Bq drops positions are visible
- Better signal-to-noise ratio and counting events capability

- Feasability of measuring sub-bequerel tritium activity has been proven with the optical Micromegas readout
- Image processing in progress: SOLEIL data, β activity estimation...
- New tritium samples will be studied: single cell samples
- Biologists interests: correlation between the amount of drug accumulated in different population of cells and the observed phenotype
- Optical readout Micromegas opens new possibilities: β-imaging, neutron radiography...

MEDICAPLUS/OPTIMED-B TEAM

CEA/DRF/IRFU Stephan Aune Meriem Benali (Post-doc 1/11/21-30/09/22) Théophile Benoit Thomas Bey Antoine Cools (PhD since 1/10/21) Aude Grabas **Daniel Desforge** Esther Ferrer Ribas Mariam Kebbiri Irakli Mandjavidze Yannick Mariette Victor Nadot **Thomas Papaevangelou Emmanuel Pollacco** Maxence Vandenbrouke

CERN Florian Brunbauer

CEA/DRF/IRAMIS Florent Malloggi

CEA/DRF/INSTITUT JOLIOT Fabrice Beau Laurent Devel Carole Malgorn

CEA/DRT/LIST (Neutron imaging) Adrien Sari

@ SOLEIL 16-18 November 2022

BACK-UP

22 NEUTRON DETECTION

- Acquisition modes :
 - Event-by-event : track reconstruction :
 potentially higher resolution (100 μm), better γ-to-n suppression
 - Integrated : real-time radiography :

best camera operation mode, y-to-n suppression less efficient

- ▶ ¹⁰B₄C neutron-to-charge converter
 - \blacktriangleright Thermal neutrons created by 2 µm thin ¹⁰B₄C layer
 - Conversion efficiency : 5%
 - \succ (α or Li) fragments causes strong ionisation compared to electrons
 - Drawback : fragments long range in the gas (10 mm)

Page 18

FIRST IMAGES WITH A NEUTRON SOURCE

102 Reduced drift field (V/cm/bar)

Ce2 CHARGE READOUT RESULTS

Tritiated glucose samples : 370 Bq-0. 37 Bq

F. Jambon et al, ArXiv 2109.09411 [physics.ins-det] submitted to NIMA

Biospace β -imager characteristics

- Linearity (not dynamic range !) over 4 orders of magnitude
- Spatial resolution (³H) 50µm
- Sensitivity : 1mBq/mm²
- Field of view : 24 x 32 cm²
- Using Ar + TEA
- ∎ 180k€ + 16k€ maintenance
- A 150 kg "Black Box"

COMPARISON WITH A COMMERCIAL BETA-IMAGER

Relative Count [%]

CCD camera

Lens

Acquisition Time [min]

MICROFLUIDICS : USING HYDRODYNAMICS TO TRAP **CELLS**

TRANSFER

Removing the chip cover

TRAPPING CELLS WITH MICRO-WELLS

