ALICE fixed-target project

Journées du labex P2IO 2022 December 1st 2022, Orsay

- Physics motivations
- Implementation of a fixed-target in ALICE at the LHC
- Target system conceptual design
- Outlook

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement STRONG – 2020 - No 824093

Fixed target mode at LHC

Fixed target experiments @ LHC

•Energy range: 7 TeV proton / 2.76 A TeV Pb LHC beams on a fixed target

	•	♦ 72 GeV	•	beam type	$\begin{array}{c} \text{CM energy} \\ \sqrt{s_{(NN)}} \end{array}$	boost γ=√s/2m	y shift
115 GeV	s 🛔			proton ($E = 7 \text{ TeV}$)	115 GeV	61	4.8
4				lead (E = 2.76 A.TeV)	72 GeV	38	4.2

 \rightarrow most energetic fixed-target experiment: center-of-mass energy in-between SPS at CERN and nominal RHIC Already running using SMOG and SMOG2 gaseous target at LHCb

Rapidity range

- Entire center-of-mass forward hemisphere ($y_{CM} > 0$) within 1 degree
- Easy access to (very) large backward rapidity range ($y_{CM} < 0$) and large parton momentum fraction in the target (x_2)

Main strengths of the ALICE detector in fixed-target mode

• Large rapidity coverage

- ALICE muon arm (+ Muon Forward Tracker) can access the mid- (y_{cms} close to \sim 0) to backward rapidity region
 - \bullet Quarkonium detection down to zero p_{T}
- ALICE central barrel probes very large negative rapidity region: $y_{cms} \sim -3$ for $z_{target} \sim -4.7$ m
 - \bullet Excellent PID capabilities, particle detection down to low p_{T}

Physics motivations

Physics programme with a fixed target mode with ALICE at LHC: <u>Phys.Rept.911(2021)1-83</u> ESPP document

- Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon and nucleus and its connection to astroparticles
 - Structure of nucleon and nucleus at high-*x* poorly known
 - Study possible EMC effect in nuclei
 - Existence of possible non-perturbative source of c/b quarks in the proton: useful for high energy neutrino and cosmic ray physics
- Study the quark-gluon plasma between SPS and RHIC energies over a broad rapidity domain
 - Explore the longitudinal expansion of QGP formation
 - Study collectivity in small systems
 - Test factorization of Cold Nuclear Matter effects with Drell-Yan

Fixed target implementation in ALICE

Crystal layout for ALICE

Crystal channeling:

- Proton beam collimation and integration studies performed in collaboration with LHC collimation team
- Deflected halo in the vertical plane, nicely collimated
- Parasitic operation (with respect to all LHC experiments): fixed-target collisions can occur in parallel to beam-beam collisions
- Optimization of the bent crystal setup: provide a maximum flux of protons on target (PoT) to the experiment and keep new LHC loss spikes within acceptable limits
- Expected PoT in Run 4: 10⁶ p/s as a minimal limit in parasitic mode
- Lead beam studies started
- Double crystal setup in IR3 during Run 3 with W target proposed by LHC collimation team: essential to validate the simulations

M. Patecki, ICFA HB2021 proceedings

Target system integration

ALICE-FT

- Integration constraints:
 - Implementation as close to IP2 as possible preferable for the physics case
 - ITS3 and FIT.A: possible displacement during End Of Year Technical Stop (EYETS)
 - → $z\sim-4.8$ m from IP2 seems feasible with target system in the horizontal plane
 - FoCal detector behind the target system: no shadow to FoCal from target system
- Vacuum constraint:
 - Beam pipe vacuum in IP2~10-10-11 mbar

Target system design

View from above

Target system:

- retractable target with linear motion
- target actuator moves thanks to a step motor that compresses a bellow
- step motor to achieve a better movement resolution (10 mm/s with 10 μ m accuracy)
- transverse pipes to avoid shadow to FoCal
- vacuum valve closed when target is fully retracted
- crosses, bellow (and target) and vacuum equipment can be removed during EYETS

Target system design and EYETS operations

Integration in mini-frame

z = 4950 mm

• target system fits into mini-frame with the current design

Impact on FoCal

- Large photon interaction probability with the vacuum valve of the target system: valve to be placed at about 30 cm from the beam pipe
- π^0 full simulation reconstructed with FoCal and the target system: no effect from the vacuum valve and Al transverse pipe

LHC beam pipe and transverse pipe=0.8 mm thick Be

Photon interaction probability

Target system design optimisation: next steps

Vacuum studies (2023):

- Target system outgassing during operation
- Pressure profile at $z = z_{target}$
- Vacuum equipment studies

Beam impedance studies (2023):

- Impedance calculation at $z = z_{target}$
- RF shielding

Build an evolutive target system prototype at Orsay (2023/2024)

- Target motorisation and mechanical studies
- Target system vacuum studies

National funding (ANR MALICE from Laure Massacrier): physics, vacuum and impedance studies

• Will complete the P2IO funding for impedance studies and for building a prototype

Outlook

• Main physics motivations for a high-luminosity fixed-target experiment with ALICE at LHC (ALICE-FT):

High-x frontier: nucleon and nuclear structure and connections with astroparticles
Quark Gluon Plasma over a broad rapidity domain

- Compelling physics case for a fixed-target programme in ALICE (ALICE-FT project)

 –bent crystal layout with proton beam provide large proton flux. Lead beam studies started.
 - -target system conceptual design ongoing, vacuum and impedance studies to be started, real evolutive prototype to be built at Orsay

Opportunities with ALICE-FT with proton beam

- Investigate large-*x* gluon nPDFs (assuming nPDF modification is the largest Cold Nuclear Matter effect, also need pH reference)
- Precise pA measurements with the central barrel up to $p_T \sim 4 \; GeV/c$
- Target x₂ coverage: 0.15-0.45

Opportunities with ALICE-FT with proton beam

B. Trzeciak PoS HardProbes2020 (2021) 190

Charm production in pC, pTi and pW

 Study of Cold Nuclear Matter effects and possible collectivity in small systems with simultaneous measurements of D meson R_{CP} and v₂ in different systems

- Precise R_{CP} measurements up to $p_T\sim 3~GeV/c$
 - Similar expected precision in 10-20% and 20-40% centrality classes
- Precise flow measurements up to $p_T \sim 3 \ GeV/c$

Recent ALICE-FT performance studies

ALICE-FT physics motivations *ESPP document*

Λ and D⁰ simulations

- Tracking and vertexing with ALICE TPC
- Fast decay simulations in p+W at $\sqrt{s_{NN}} = 115$ GeV
- Λ as a probe for strangeness content of nucleon/ nuclei (selection on decay length > 5 cm and p+π invariant mass)
- D⁰ as a probe for gluon/intrinsic charm content of nucleon/nuclei (selection on K+π invariant mass)
- Efficiency lower than in collider mode but sufficient to for D⁰ and Λ production studies without additional vertex detector

Recent ALICE-FT performance studies

D⁰ significance and S/B ratio

- Fast decay simulations in p+W at $\sqrt{s_{NN}} = 115$ GeV for one year of data taking
- Measurement of charm cross section feasible without additional vertex detector
- Results with Run 3 geometry (larger material budget compared to Run 4) : possibility to improve S/B

Opportunities with ALICE-FT with proton beam

Antiproton in pC collisions

- Use inverse kinematic:
 - $p/4He/12C/14N/16O/...(CR) + H (at rest) \rightarrow antiproton of large E$
 - Equivalent to (inverse kinematic): p(7 TeV beam) + p/4He/12C/ $^{14}\text{N}/^{16}\text{O}/...$ (at rest) \rightarrow antiproton of small E
 - Complementary measurement with respect to LHCb
- Very low proton energy accessible with the central barrel with large yields

Recent ALICE-FT performance studies

Antiparticules simulations

- Antiproton important input for theoretical calculations of secondary cosmic antiproton spectrum:
 - p+C (target) → antiproton of low E: inverse kinematic process of high energetic C+H (target) → antiproton of large E
- Simulations include detector efficiency and acceptance
- Large yield expected in the TPC and TOF
- Antiproton feed-down could be as well measured by measuring anti- Λ (Anti- $\Lambda \rightarrow$ antiproton + π)
- Estimation of the PID performance with TPC and TOF ongoing

Opportunities with ALICE-FT with lead beam

Rapidity scan in heavy-ion collisions

- A rapidity scan at 72 GeV with FT@LHC complements the RHIC beam energy scan
- Study of identified particles can be performed at backward y_{cms} in ALICE, in complementarity to LHCb

