

### FIRST CHARACTERIZATION OF SHORT-RANGE CORRELATIONS (SRC) IN AN EXOTIC NUCLEUS AT R<sup>3</sup>B

ANDREA LAGNI CEA/IRFU/DPHN

1 DECEMBER 2022

Journée du LABEX P2IO

SUPERVIORS: ANNA CORSI ALDRIC REVEL





GET\_INVOLVED GSI-FAIR



# INTRODUCTION



#### INDEPENDENT PARTICLES



 $\rho_0$ =0.16 nucleons.fm<sup>-3</sup>

CLUSTERING



 $\rho << \rho_0$ 

# SHORT RANGE



 $\rho >> \rho_0$ 

 Neutrons and protons move independently in well-defined quantum orbits;

- Alpha clustering, Hoyle state;
- Neutron halo;

High relative momentum and low
centre of mass (c.m.) momentum pairs;









# INTRODUCTION



#### INDEPENDENT PARTICLES



 $\rho_0$ =0.16 nucleons.fm<sup>-3</sup>

#### CLUSTERING



ρ << ρ₀

### SHORT RANGE



 Neutrons and protons move independently in well-defined quantum orbits;

- Alpha clustering, Hoyle state;
- Neutron halo;

High relative momentum and low
centre of mass (c.m.) momentum pairs;









# INTRODUCTION



#### INDEPENDENT PARTICLES



 $\rho_0=0.16 \text{ nucleons.fm}^{-3}$ 

#### CLUSTERING



 $\rho << \rho_0$ 

# SHORT RANGE CORRELATIONS

ρ >> ρ₀

 Neutrons and protons move independently in well-defined quantum orbits;

- Alpha clustering, Hoyle state;
- Neutron halo;

 High relative momentum and low centre of mass (c.m.) momentum pairs;









# MOTIVATION



#### **Electron scattering experiments:**

- SRC are mainly proton-neutron (pn) pairs;
- **pp/pn** ratio does not change with A;
- The fraction of high momentum protons **increase** with N/Z.



O. Hen et al. (CLAS Collaboration), Science, 346 (6209):614, 2014.

#### Proton scattering experiments:

- JINR experiment (2018);
- *R*<sup>3</sup>*B* Experiment (May 2022);
  - Probe SRC in an isotopic chain.

### GOALS:

- Determine SRC properties (pair ratio, relative and pair center-of-mass momentum) in an exotic nucleus for the first time;
- The analysis of  ${}^{16}C$  will add a new measurement at N/Z = 1.67, above the largest available N/Z and at a much smaller mass.





# $R^{3}B$ experimental set up



















#### TOFD:

Prepared and tested the detector for the experiment;

ANALYSIS

• Charge calibration of the detector;



### FOOT:

- Tested the electronics at CEA-Saclay (Jan-Feb 2022);
- Tested the detector for the experiment at GSI;
- Energy calibration and protons tracking;
- Vertex reconstruction.





# CONCLUSIONS



- Nucleon pairs that are close together in the nucleus;
- High relative momentum and low centre of mass (c.m.) momentum.

 Proton scattering in inverse kinematics;

 Add a new measurement at N/Z = 1.67, above the largest available N/Z and at a much smaller mass.



#### Analysis:

- TOFD charge calibration;
- FOOT protons tracking and vertex reconstruction.











### Journée du LABEX P2IO

### THANKS FOR YOUR ATTENTION







GET\_INvolved GSI-FAIR



### Journée du LABEX P2IO

### BACKUP







GET\_INvolved GSI-FAIR



### Journée du LABEX P2IO







#### **Target tracking FOOT:**

- Position correlations with incoming detectors (MWPCs);
- Energy calibration and energy correlation;



### Vertex reconstruction:

 Minimum distance between al possible combinations of FOOT tracks from the left arm and right arm;







# ANALYSIS



#### **Target tracking CALIFA:**

- Calibration of the crystals with <sup>22</sup>Na source;
- Selection of the (p,2p) events;
- **Opening angle** between two protons.





