

HRTES-X

High Resistivity TES micro-calorimeter :

a path toward breaking the power dissipation technological lock for future X-ray space telescopes

Xavier de la Broïse IRFU/DEDIP : B. Criton, G. Jégo, X. Coppolani, N. Salsé, T. Bey IRFU/DAp : J.-L. Sauvageot IJCLab : S. Marnieros, C. Oriol, L. Bergé

Introduction (1)

Context : Development of space spectro-imagers for X-ray astronomy

- > Made of matrices of micro-calorimeters, working as follow :
 - An **absorber** is maintained at 50 mK by a weak thermal link.
 - When a X-photon arrives, its temperature increases (~mK), and then recovers its initial value.
 - The temperature increase is measured by a very sensitive thermometer, TES, which is a superconducting resistance maintained at its transition temperature ⇒ very high dR/dT.
 - The **resistance** increase is proportional to the **energy** of the incident **photon**.
- > Requirements :
 - High **spectral resolution** ⇒ pixels with high **sensitivity** and low noise.
 - High spatial resolution and wide field of view ⇒ large number of pixels.
- > Current technology is sensitive, but limited by a **technological lock :**
 - Low resistivity TES (10-100 mΩ) requires SQUID readout at same temperature ⇒ induces "high" dissipation at 50 mK.
 - But the cooling power of spatial cryo-coolers is very low : ~1 µW at 50 mK ⇒ this limits the number of pixels : 4 000 max.
- > Our goal :
 - Make a reduced *demonstrator* prefiguring a space spectro-imager with **50 to 100 000 pixels**,
 - using a new technology for thermometers, the HR-TES (1-5 MΩ),
 - which allows to place the first stage of electronics at higher temperature (4 K) where power budget is much higher, and so allows much more pixels at 50 mK.

High resistivity TES (HR-TES) technology

- > Based on **NbSi** alloy, developed by IJCLab.
- > Advantages : it offers
 - tunable high normal-state resistance ~3 MΩ ⇒ facilitates signal transport from 50 mK to 4 K ⇒ low consumption at 50 mK (< 20 pW/pixel) : < 1 µW for > 50 000 pixels,
 - according simulations, high energy resolution : ~2 eV for 500 μ m pixels \rightarrow state of the art.
- > Disadvantage :

High electron-phonon **decoupling** that until now reduced resolution. But we solve this problem thanks to an innovation : the **active** electro-thermal **feedback**.

R(T) characteristic of NbSi HR-TES thermometer

Introduction (2)

Active electro-thermal feedback

- > Working principle
 - An heater and a thermometer deposited on each pixel.
 - The electronic feedback makes heater continuously dissipate a weak Joule power.
 - When a photon arrives, this power is reduced by feedback ⇒ the temperature tends to remain constant.
 - So the **signal** is no more the temperature increase, but the **power decrease** in the heater.
- > Advantages
 - The biasing current in the thermometer can be low and constant
 ⇒ reduces drastically the electron-phonon thermal decoupling
 ⇒ allows better electronic temperature restitution of the phonon temperature variations.
 - Excellent stability.
 - Photon energy dynamic range is increased.

Development plan : 4 stages

- ➤ WP1 : Individual pixels suspended by bonding wires. → For quick tests and optimization.
- ➤ WP2 : Mechanical matrices of suspended membranes. → To check the mechanical solidity.
- > WP3 : Sensitive matrices of suspended membranes equipped by HR-TES. → To obtain a reduced demonstrator.
- WP4 (in parallel) : Multiplexing integrated circuit and electronic boards. → To prove the scalability to large matrices.

Funding

- > P2IO :
 - WP1, WP2, WP3 : 40 k€ \rightarrow detector manufacturing by IJCLab
 - WP4 : 20 k€ → electronics, cold tests and setup by IRFU
- > Others :
 - Thesis of Benjamin Criton (12/2020 12/2023) : about to start his 3rd year. Main author of this work.

Thermometer Heater

Design of a pixel : a 500 μm Si square with two NbSi meanders : one is a thermometer, the other an heater.

Simulation of the same pixel working with passive (top) and active (bottom) feedback. In blue : phonons temperature (resulting from the incident photon energy deposition). In green : e⁻ temperature (inducing the electrical signal).

CEA IRFU DEDIP | Xavier de la BROÏSE | 30 novembre 2022

Modelling – simulation – optimization

Modelling

- Take into account the thermal part, the electrical part, and the interactions (by thermometer response and Joule dissipations).
- > Variables :
 - **Temperatures** of absorber, pixel phonons, heating and thermometer electrons.
 - Electrical voltages.
- > Simulation parameters :

Irfu

- Thermal conductances between absorber, thermometer, heater, cold bath.
- Thermal capacities of absorber, thermometer, heater, substrate.
- Electrical resistances and capacities.
- Noise sources.

Simulation

- > Physical model implemented in two forms :
 - Spice simulator transient model → biasing, signal shape, saturation.
 - Linearized analytical model \rightarrow noise spectra, spectral resolution.
- > Validated by comparison between simulation and measurements : reasonable **agreement** \Rightarrow good confidence in simulation predictions.

Optimization

- Used to optimize the dimensional parameters to maximize the spectral resolution.
- > Studied parameters : cold bath temperature, transition temperature, heater resistance and thermometer normal resistance.
- Results :
 - The most influential parameters are the **thermometer resistance** and the **transition temperature**.
 - When optimized the theoretical **spectral resolution** is lower than **2 eV**.
 - ⇒ **Used** to set the characteristics of the new individual pixel **prototypes** we manufactured.

Spectral resolution as a function of cold bath temperature (left) and transition temp. (right).

Simulated noise PSD and its components.

Spectral resolution as a function of heater (left) and thermometer (right) resistances.

CEA IRFU DEDIP | Xavier de la BROÏSE | 30 novembre 2022

New individual pixels (WP1)

Description

- Manufactured by IJCLab, implemented and tested by IRFU.
- > On each 500 μ m pixel : a **thermometer** (NbSi, Tc \approx 130 mK), an heater (NbSi, without superconducting transition).
- Suspended and interconnected by bonding wires that adjust the thermal link resistance (2 Al \rightarrow "no" thermal conduction, 2 Au \rightarrow low thermal conduction).

Cold measurements

- > Two types of stimuli :
 - Heat pulse (Joule) generated by on-chip injection system.
 - \Rightarrow allows the energy calibration of the whole readout chain, the control of linearity, etc.
 - X-photons generated by ⁵⁵Fe source.

corresponding to various photons energies.

corresponding injected energies.

Conclusion

- > Good linearity (\Rightarrow constant voltage/energy gain : V/eV), good stability.
- Satisfactory agreement between simulation and measurements.
- But **bad energy resolution**, due to EM and vibration perturbations inducing excess noises \geq \Rightarrow need to **improve** the test **setup**.

Photo of a pixel on its wafer. before cutting.

A pixel suspended by its Al and Au bonding wires.

CEA IRFU DEDIP | Xavier de la BROÏSE | 30 novembre 2022

New experimental setup

- > Two functions : holding and cooling of the chain elements.
- > Three temperature stages, electrically interconnected by a shielded superconductive harness :
 - 50 mK : X-ray source (⁵⁵Fe), detector, multiplexing electronics.
 - 800 mK : Intermediate thermalization and IR screen.
 - 4 K : amplification electronics.
- > Installation in progress.
- > Expected **improvements** : better **EM** shielding, less **vibrations**.

37-tracks shielded superconductive harness.

3D drawing when EM and IR screen boxes are removed.

Matrices (WP2 & WP3)

- > Wire bonding technique cannot be used for matrices \Rightarrow use another technique : thin (5µm) **Si membranes suspended by beams**.
- > Development in two steps :

First step : mechanical matrices (WP2 : done)

- > **Passive** matrices : no NbSi deposition on pixels \Rightarrow no thermometer nor heater.
- > Aim : test **solidity** of membranes and implementation of **absorbers**.
- > Two implementation means tested :
 - **Gluing** (\rightarrow about to be validated).
 - Hybridization by ball (\rightarrow very first tests performed, for the moment not successful).
- > Conclusion : membrane and beam **solidity validated**.

Second step : sensitive matrices (WP3 : in progress)

- 4x4 matrices with depositions of HR-TES (NbSi) on pixels and with signal tracks on beams and structure.
- > A set of parameters will be tested :
 - different lengths, sections and quantities of beams
 (→ set of thermal resistances and mechanical solidities),
 - different thermometer resistances and track widths.
 Some matrices will be homogeneous, others heterogeneous (for comparison)
- > Status : **design** in progress, manufacturing will start soon.

Side view of an absorber glued on a suspended pixel.

Deposition of glue on pixel membranes of mechanical matrix.

Electronics (WP4)

Designed to fit onto the cryo-cooler cooling power \Rightarrow functions split into two stages :

50 mK stage

- > Function : **multiplexing** $16 \rightarrow 1$ of : 1) the readout signal <u>AND</u> 2) the feedback links.
- > Requirements :
 - For **signal** : high impedance detector \Rightarrow anti-charge-injection system.
 - For **feedback** : holding between two updates when sampling ⇒ capacitive memory.
 - Thermal budget : consumption compatible with 1 μ W for all channels 50 000 channels.
- > Status :
 - Integrated circuit : manufacturing in progress, delivery in February 2023.
 - Electronics boards : design in progress.

4 K stage

- > Function : readout signal **amplification** and **feedback** signal generation.
- Requirements :

low noise (1 nV/ \sqrt{Hz}), high input impedance (\rightarrow HEMT), low dissipation.

> Status : development of a new version in progress.

Our goal

➢ Within one year, connect this 16 → 1 multiplexing electronics to a 4x4 matrix and validate the whole.

Schematic of the elementary cell multiplexing signal and feedback.

Image of the multiplexing integrated circuit.

The HR-TES promises :

- > An ultra-low power dissipation readout at 50 mK, allowing matrices of more than 50 000 pixels (\rightarrow today : 4000 max with LR-TES).
- > A spectral resolution below 2 eV (\rightarrow today : 2.5 eV with LR-TES), according to our detailed model and theoretical simulations.

We demonstrated today :

- > The elimination of the effects of the **electron-phonon decoupling**, which was the blocking point of HR-TES use for X-ray, thanks to the **active electro-thermal feedback**.
- > The strong linearity of the system, proved thanks to our calibration device.
- > The effective detection of ⁵⁵Fe X-ray photons on 0.5 mm pixels.
- > But : for the moment we obtain a bad experimental spectral resolution, due to high parasitic noises in the setup.

We are working on (\rightarrow and should get within a year) :

- > The installation of our new mechanical setup
 - \rightarrow should reduce the parasitic noises and improve the spectral resolution.
- ➤ The design and manufacturing of **pixel-on-membrane matrices** (WP3 IJCLab) → should also improve the spectral resolution, and is an important step towards large matrices.
- ➤ The design of the new electronics boards (50 mK and 4 k), implementing the integrated circuit that is in production (WP4) → should prove the possibility of multiplexing the electro-thermal feedback.

Future prospects

Comparison between present and expected future pixel architecture.

- > A funding has been obtained to explore in parallel an **new improvement way** :
 - Transformation of the mechanical structure by replacing the suspended membranes by a planar structure, thanks to a technological innovation : a thermally super-insulating multilayer structure.
 - ⇒ this could transform the architecture of future low temperature detectors by facilitating their **manufacturing**, their implementation, and by improving their **robustness**.
- These developments are designed for X-ray spatial detection (beyond the Athena satellite project), but are transposable to other bands (sub-mm) and others contexts (ground instruments).

