DeLLight : Modifying the speed of light in a vacuum with intense laser pulses

Journée du LABEX P2IO

30th November 2022

つくへ

Speed of light in vacuum

 \bullet Speed of light and optical index $(n=1)$ are constants:

$$
\overrightarrow{D} = \epsilon_0 \overrightarrow{E} \brace{\overrightarrow{B} = \mu_0 \overrightarrow{H}} \Rightarrow c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}
$$
 with ϵ_0 and μ_0 constant

Speed of light in dielectric medium

 \bullet Optical index depends on external field B, E : $\overrightarrow{D} = \epsilon_0 \overrightarrow{E} + \overrightarrow{P}(\overrightarrow{E}, \overrightarrow{B})$ $\overrightarrow{B} = \mu_0 \overrightarrow{H} + \overrightarrow{M}(\overrightarrow{E}, \overrightarrow{B})$ \mathcal{L} $\Rightarrow v = \frac{1}{\sqrt{5.25}}$ $\sqrt{\epsilon(E,B)\mu(E,B)}$

Well known example is the Kerr Effect where the optical index n depends on I:

$$
n=n_0+n_2\, \hspace{2.6cm} (1)
$$

Nonlinear electrodynamics in vacuum

• Heisenberg & Euler (1936):

$$
\begin{cases}\n\overrightarrow{D} = \epsilon_0 \overrightarrow{E} \\
\overrightarrow{B} = \mu_0 \overrightarrow{H}\n\end{cases}\n\longrightarrow\n\begin{cases}\n\overrightarrow{D} = \epsilon_0 \overrightarrow{E} + \overrightarrow{P}(\overrightarrow{E}, \overrightarrow{B}) \\
\overrightarrow{B} = \mu_0 \overrightarrow{H} + \mu_0 \overrightarrow{M}(\overrightarrow{E}, \overrightarrow{B})\n\end{cases}
$$
\nClassical electrodynamic in
vacuum
vacuum
the
vacuum fluctuation
vacuum fluctuation
vacuum fluctuation

$$
\left\{\ M=-\xi\epsilon_0^2[2(E^2-c^2B^2)\overrightarrow{B}+7(\overrightarrow{E}.\overrightarrow{B})\overrightarrow{E}\}\right\}
$$

• Schwinger (1951) : Derived later the H-E result within the QED frame.

wi

QED predicts that the optical index of the vacuum is modified by an external field.

Has this ever been observed?

Dellight principle - pump/prob interaction

LASERIX spectifications:

$$
\left.\begin{array}{l}\nE_{pump} = 2.5 \text{ J} \\
\Delta \tau = 30 \text{ fs} \\
W_0^{pump} = w_0^{prob} = 5 \mu \text{m}\n\end{array}\right\} \Rightarrow\n\left[\begin{array}{l}\n\delta n_{QED} = 2 \times 10^{-13} \\
\delta \theta_y \gg = 0.1 \text{ prad}\n\end{array}\right]
$$

 \Box

 2990

Deflection measured with a Sagnac interferometer

What we observe on the CCD

$$
I_{out}=FI_{in}
$$

Extinction Factor F:

$$
F = \frac{I_{out}}{I_{in}} = (\delta a)^2
$$

BS coefficient:

$$
\begin{cases}\nT = \frac{1}{2}(1 + \delta a) \\
R = \frac{1}{2}(1 - \delta a)\n\end{cases}
$$

つくへ す口下 ∍

Deflection measured with a Sagnac interferometer

Expected sensitivity

3-D numerical simulations developped by Scott Robertson:

$$
\left\{\n \begin{aligned}\n E_{pump} &= 2.5 \text{ J} \\
 F &= 0.4 \times 10^{-5} \text{ (extinction)} \\
 f &= 50 \text{ cm (focal length)} \\
 W_0^{pump} &= w_0^{prob} = 5 \mu \text{m} \text{ (waist at focus)}\n \end{aligned}\n \right\}\n \Rightarrow\n \boxed{\Delta y = 0.015 \text{ nm}}.
$$

With N_{mes} measurements collected, the sensitivity (number of standard deviations $N_{\textit{sig}}$) is : $N_{\textit{sig}} = \frac{\Delta y}{\Delta y \Delta N}$ $\frac{\Delta y}{\sigma_y \sqrt{N_{\text{mes}}}}$

- Spatial resolution expected : $\sigma_{\rm v}=10$ nm
- Laser repetition rate : 10 Hz

$$
\Rightarrow \boxed{N_{\text{sig}} = 3\sigma \text{ in} \sim 9 \text{ day}}
$$

Implementation of a prototype in air in order to characterize the limiting experimental parameters.

Objectives:

- \bullet Obtain an extinction factor F such $F = 0.4 \times 10^{-5}$ \Rightarrow see S. Robertson et al., Phys. Rev. A 103, 023524 (2021)
- **TODAY:** Observation with the DeLLight prototype of the deflection induced by the Kerr effect in air at low energy.

DeLLight goal in vacuum :

 $\omega_0 \otimes$ focus $5 \mu m$ $f = 500$ mm $E_{pump} = 2.5$ J

DeLLight prototype in air :

 $\omega = 1$ mm ω_0 @ focus 35μ m $f = 100$ mm $E_{pump} \sim \mu$ J

メロトメ 御 トメ 君 トメ 君 ト

重

つくへ

- Signal Δy (ON OFF) proportional to E_{pump} , as excepted for the Kerr effect
- **•** Simulation agreement: factor 1.8 \mathcal{O} $E_{pump} = 3 \mu J$.

$$
\Rightarrow \begin{array}{c} \Delta Y^{exp} = 250 \text{ nm} \\ \Delta Y^{sim} = 450 \text{ nm} \end{array}
$$

justied by the uncertainty regarding *n^{Kerr}*

Deflection as function as ΔT

Summury:

• We are able to observe the deflection induced by the Kerr effect in the air when the pump and the probe are propagating in the same direction.

Next step:

- . Observation of the Kerr effect in the air: the pump and the probe propagate in opposite directions.
- **•** Reduce the mechanical noise to improve the resolution in the high amplification regime with $\Rightarrow \sigma_{\rm v} = 10$ nm.
- **•** Start measure in vacuum

Dellight team: F. Couchot, A. Kraych, M. Mailliet, S. Robertson, X. Sarazin, M. Urban LASERIX team: E. Baynard, J. Demailly, M. Pittman

 \leftarrow

つくへ

Thank you for your attention !

At high energy regime $\hbar\omega\gg m_ec^2$: perturbation of the vacuum induce:

- Light by light scattering \rightarrow Observed [1,2,3]
- Vacuum magnetic birefringence \rightarrow Observed [4]

At low energy regime $\hbar\omega \ll m_{e}c^{2}$ with high occupation number (10¹⁹ photons): modification of the fundamental constant as c, ϵ_0 and μ_0 .

- [1] : M. Aaboud et al. (ATLAS Collaboration), Nat. Phys 13 (2017)
- [2] : G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 123 (2019)
- [3] : A.M. Siruyan et al. (CMS Collaboration), Phys. Lett. B 797 (2019)
- [4] R.P. Mignani et al., Mon. Not. R. Astron. Soc. 465 (2016)

Displacement extraction from data

Beam pointing fluctuations corrected from the back reflexion

Deflection as function as polarization

 α : polarization angle between the pump and the probe

つくへ

17/18

Extinction and Amplification

THE EXPECTED AMPLIFICATION !!!

 \bullet We obtain the expected amplification $G = 250$ with

 $F = 0.4 \times 10^{-5}$