De la dynamique galactique à la formation stellaire : comment est régulé le taux de formation d'étoiles ? From galactic dynamics to star formation, what sets the star formation rate?

in collaboration with Patrick Hennebelle, Frédéric Bournaud, Tine Colman, Simon Iteanu et Corentin le Yhuellic

Journées du labex P2IO, 1/11/2022

Stars shape the universe.

Image Credit: NASA, ESA, CSA, STScI; Processing Copyright: Robert Eder

Noé Brucy

Regulation of Star Formation

1/11/2022

Gravity,

Turbulence

Stars forms out of the dense gas of the InterStellar Medium

Image Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team

Noé Brucy

Stars forms out of the dense gas of the InterStellar Medium

What is the **ISM**?

Space between the stars

- ~ 99 % gas (by mass) (H/HII/H₂ 70 %, He 28 %)
- \blacktriangleright ~ 1 % dust grains

Main drivers of the ISM

- Hydrodynamics
- Gravity
- Cooling/Heating
- Chemistry
- Magnetic field (MHD)

Stars

Image Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team

Noé Brucy

The matter cycle in the ISM

Noé Brucy

Regulation of Star Formation

1/11/2022

The star formation rate (SFR)

Mass of star formed by unit of time

The Schmidt-Kennicutt law relation (**SK**)

What triggers stops star formation?

because gravity would consume all the gas quickly

$$egin{aligned} SFR_{
m grav} &pprox rac{M_{
m dense}}{t_{
m free-fall}} pprox 460 \ {
m M}_{\odot} \cdot {
m yr}^{-1} \ &\gg SFR_{
m obs} &pprox 2 \ {
m M}_{\odot} \cdot {
m yr}^{-1} \end{aligned}$$

What stops star formation?

A natural candidate: stars themselves! (via stellar feedback)

More stars \rightarrow more feedback \rightarrow less star formation. Self-regulation?

What stops star formation?

Magnetic field

What stops star formation?

Turbulence

Turbulence can be composed of

compressive modes

Richardson cascade for incompressible turbulence

or solenoidal modes

Characterized by its strength σ and compressibility χ

Goals

- What is the more efficient process that quenches star formation?
- What regulates star formation?
- It is the same for all galaxies?

Outline

- I Introduction
 - A Star Formation
 - B Quenching of star formation
- II Kiloparsec simulations
 - A Stellar feedback
 - B Large scale turbulence
- III Full galactic simulations
- IV Conclusions

Noé Brucy

Physics	Scale
Hydrodynamics	Small: < 10 pc
Gas gravity	Medium: 1 pc to 1 kpc
Stars and dark matter gravity	Large: 100 pc to 20 kpc
Star formation	Outline
Stellar feedback SN HH FHF	I - Introduction II - Kiloparsec simulations
Turbulence $\sigma \propto$	III - Disk simulations IV - Conclusions
Focus Included Not included	

Noé Brucy

II - Kiloparsec simulations

Brucy+ 2020, Brucy+ 2022 (subm), with a glimpse of Brucy & Hennebelle, 2023 (in prep.)

Outline

- Introduction

- A Star Formation
- B Quenching of star formation
- II Kiloparsec simulations
 - A Stellar feedback
 - B Large scale turbulence
- III Full galactic simulations
- IV Conclusions

Kiloparsec simulations

Goals We focus what quenches the SFR in dense environments, and in particular

- \star Role of stellar feedback
- ♂ Role of large scale turbulence
- \cup Role of magnetic field

Can these processes explain the observed SFR from the Schmidt-Kennicutt (SK) relation?

1/11/2022

Main simulation setup

Roughly similar setup: FRIGG, TIGRESS, SILCC.

MHD simulations with Ramses

- MHD equations + cooling
- Star formation and feedback
- No very hot gas $(> 10^6 \text{ K})$

Initial conditions

•
$$\rho(z) = n_0 \exp\left(-\frac{1}{2}\left(\frac{z}{z_0}\right)^2\right)$$

Stellar and dark matter potential

$$\blacktriangleright B_{x}(z) = B_{0} \exp\left(-\frac{1}{2}\left(\frac{z}{z_{0}}\right)^{2}\right)$$

Physics	Scale
Hydrodynamics	Small: < 10 pc
Gas gravity	Medium: 1 pc to 1 kpc
Stars and dark matter gravity	Large: 100 pc to 20 kpc
Star formation	Outline
Stellar feedback SN HII FUV Magnetic field	II - Kiloparsec simulations A - Stellar feedback B - Large scale turbulen
Focus Included Not included	

A - With only stellar feedbacks $\Sigma = 38.7 \ M_{\odot} \cdot {\rm pc}^{-2}.$ Face on views of column density (left) and midplane density (right).

A - With only stellar feedbacks

Column density maps

15

A - With only stellar feedbacks

Stellar feedback is sufficient in Milky-Way like galaxies ... BUT is too weak in high-z galaxies.

Noé Brucy

Regulation of Star Formation

1/11/2022

16

B - The influence of larger-scale dynamics: turbulent driving

Turbulence from galactic dynamics

► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)

B - The influence of larger-scale dynamics: turbulent driving

$$\boldsymbol{f}(\boldsymbol{x},t) = \boldsymbol{f}_{\mathrm{rms}} \times \int \boldsymbol{\hat{f}}(\boldsymbol{k},t) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} d^{3} \boldsymbol{k}$$

Turbulence from galactic dynamics

- ► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)
- Expected injected power: $P_{\rm LS} \propto \Sigma_g^4$ or $P_{\rm LS} \propto \Sigma_g^{2.5}$

Model

An extra 2D force is added to generate random motion at scales between 300 and 1000 pc.

Noé Brucy

Regulation of Star Formation

1/11/2022

Noé Brucy

Regulation of Star Formation

1/11/2022

17

Power needed to retrieve the Schmidt-Kennicut relation

Stellar feedback is not powerful enough to quench star formation.

Conclusion of part II

- \star Role of stellar feedback.
 - Not powerful enough to quench star formation in gas-rich galaxies
- Role of large scale turbulence.
 - A suitable candidate for gas-rich galaxies
 - Increase speed dispersion and anisotropy
 - Solenoidal driving 10x more efficient

IV - Full galactic simulations

Outline

- I Introduction
 - A Star Formation
 - B Quenching of star formation
- II Kiloparsec simulations
 - A Stellar feedback
 - B Large scale turbulence
- III Full galactic simulations IV - Conclusions

20

1/11/2022

Constraining the turbulent driving

Is the turbulence we inject realistic ?

What would be a realistic turbulent driving at these scales for gas-rich galaxies?

- analytical models (gravoturbulence (Nusser+2022), radials motions (Krumholtz+2018), accretion from outside the galaxy (Forbes+2022))
- observational constraints (PHANGS, Sun+2022),
- galactic scale simulations.

Constraining the turbulent driving

Is the turbulence we inject realistic ?

What would be a realistic turbulent driving at these scales for gas-rich galaxies?

- analytical models (gravoturbulence (Nusser+2022), radials motions (Krumholtz+2018), accretion from outside the galaxy (Forbes+2022))
- observational constraints (PHANGS, Sun+2022),
- ► galactic scale simulations.

Work in progress: galactic scale simulations and measure turbulence

1/11/2022

Noé Brucy

Physics	Scale
Hydrodynamics	Small: < 10 pc
Gas gravity	Medium: 1 pc to 1 kpc
Stars and dark matter gravity	Large: 100 pc to 20 kpc
Star formation	Outline
Stellar feedback ₅	III - Full galactic simulations
Turbulence <i>a</i> x	
Focus Included Not included	

Noé Brucy

Column density maps

Gas Fraction: 20 %

30%

40%

First insights Sectors extraction

Sector extraction

Position of the extracted sectors

23

SFR and Schmidt-Kennicutt law

1/11/2022
Comparison between kpc boxes and full galaxy simulations Preliminary results on velocity dispersion for a galaxy with 30 % gas fraction

Box simulations

Galactic simulation

1/11/2022

Comparison between kpc boxes and full galaxy simulations Preliminary results on velocity dispersion for a galaxy with 30 % gas fraction

Turbulence is less strong and anisotropic than our requirements in kpc simulations

Summary

- Feedback regulation is suitable in Milkay-way like galaxies but not in higher column density environnments,
- The turbulence from large scale motions in the galaxy interacts
- Galactic simulations can be used to constrain turbulent driving at the kiloparsec scale.

Perspective

- Completion of the parameter study at the kiloparsec scale
- Better understanding of the turbulence injection
 - Fourier analysis of the galactic scale simulation
 - Tracking where the turbulent energy come from
 - Add magnetic field
- How much the SFR is quenched? (this work) \rightarrow How?
 - Work on the link between SFR and turbulence
 - Similar work on feedback

I - Introduction II - Kiloparsec simulations III - Full galactic simulations IV - Conclusions

Appendix

Turbox Fragdisk Model for radial profiles Q Numerical turbulence Equations Initial conditions Context & SOA More results

Galturb

With only stellar feedbacks

Is stellar feedback needed ?

Stellar feedback is necessary, but its importance decreases as the gas column density increases.

Turbulence from galactic dynamics

► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)

 ϵ specific power injected v_l typical speed at a scale *l* σ_g speed dispersion of the gas

$$\epsilon \sim \frac{v_l^3}{l}$$
 , (1)

Turbulence from galactic dynamics

- ► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)
- Expected injected power: $P_{\rm LS} \propto \Sigma_g^4$ or $P_{\rm LS} \propto \Sigma_g^{2.5}$

 ϵ specific power injected v_l typical speed at a scale *l* σ_g speed dispersion of the gas

$$\epsilon \sim rac{v_l^3}{l} \propto \sigma_g^3,$$
 (1)

Turbulence from galactic dynamics

- ► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)
- Expected injected power: $P_{\rm LS} \propto \Sigma_g^4$ or $P_{\rm LS} \propto \Sigma_g^{2.5}$

$$\epsilon \sim \frac{v_l^3}{l} \propto \sigma_g^3,$$
 (1)

Q Toomre parameter κ epicyclic frequency Σ_g gas column density G gravitational constant

$$Q = \frac{\sigma_{g\kappa}}{\pi \Sigma_g G} \propto \frac{\sigma_{g\kappa}}{\Sigma_g} \sim 1, \quad (2)$$

Turbulence from galactic dynamics

- ► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)
- Expected injected power: $P_{\rm LS} \propto \Sigma_g^4$ or $P_{\rm LS} \propto \Sigma_g^{2.5}$

$$\epsilon \sim \frac{v_l^3}{l} \propto \sigma_g^3,$$
 (1)

$$Q = \frac{\sigma_g \kappa}{\pi \Sigma_g G} \propto \frac{\sigma_g \kappa}{\Sigma_g} \sim 1, \quad (2)$$

2 cases: $\kappa\propto\sigma_{g}$ or constant κ

$$\sigma_g \propto \Sigma_g^{0.5} ext{ or } \sigma_g \propto \Sigma_g, \quad (3)$$

$$\epsilon \propto \Sigma_g^{1.5} ~{
m or}~ \epsilon \propto \Sigma_g^3,$$
 (4)

Turbulence from galactic dynamics

► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)

• Expected injected power:
$$P_{\rm LS} \propto \Sigma_g^4$$
 or $P_{\rm LS} \propto \Sigma_g^{2.5}$

$$\epsilon \sim \frac{v_l^3}{l} \propto \sigma_g^3,$$
 (1)

$$Q = \frac{\sigma_g \kappa}{\pi \Sigma_g G} \propto \frac{\sigma_g \kappa}{\Sigma_g} \sim 1, \quad (2)$$

2 cases: $\kappa \propto \sigma_g$ or constant κ

$$\sigma_g \propto \Sigma_g^{0.5} ext{ or } \sigma_g \propto \Sigma_g,$$
 (3)

$$\epsilon \propto \Sigma_g^{1.5} ~{
m or}~ \epsilon \propto \Sigma_g^3,$$
 (4)

$$P_{
m LS} \propto \Sigma_g^{2.5}$$
 or $P_{
m LS} \propto \Sigma_g^4$. (5)

with $P_{\rm LS}$ the total power injected.

Turbulence from galactic dynamics

► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)

• Expected injected power:
$$P_{\rm LS} \propto \Sigma_g^4$$
 or $P_{\rm LS} \propto \Sigma_g^{2.5}$

$$\boldsymbol{f}(\boldsymbol{x},t) = \boldsymbol{f}_{\mathrm{rms}} \times \int \boldsymbol{\hat{f}}(\boldsymbol{k},t) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} d^3 \boldsymbol{k}$$

Turbulence from galactic dynamics

- ► Spirals, mass transfert → turbulence (eg. Krumholz+ 2018)
- Expected injected power: $P_{\rm LS} \propto \Sigma_g^4$ or $P_{\rm LS} \propto \Sigma_g^{2.5}$

Model

An extra 2D force is added to generate random motion at scales between 300 and 1000 pc.

With large-scale turbulence driving $\Sigma=38.7~M_\odot\cdot{\rm pc}^{-2}\text{, strong driving. Face on views of column density}$

38.6 Myr

Can we reproduce Schmidt-Kennicutt with turbulence driving?

Column density maps

6

1/11/2022

High magnetic field

Even with higher B field, we cannot reproduce SK without injecting turbulence

Noé Brucy

Regulation of Star Formation

Velocity dispersion

A word about velocity dispersion

Velocity dispersion measured in the simulations, where $\sigma_{2D} = \sqrt{\sigma_x^2 + \sigma_y^2}/\sqrt{2}.$

The simulations with high 2D turbulent driving show a high anisotropy, while simulations without driving are almost isotropic.

Apodized Driving

Further study (WIP): Link between SFR and turbulence

Further study (WIP): Link between SFR and turbulence

Noé Brucy

Regulation of Star Formation

Further study (WIP): Link between SFR and turbulence

Using an idealized turbulent box

Goal: improve existing analytical SFR models for higher Mach number.

- First try : pure hydrostatic model
- only self-gravity and pressure.
- We solved the Lame-Emden equations for a cylindrical distribution.
- Does not convincingly match the simulations

Support due to differential rotation plays a role !

Simplifying assumptions:

- 1. shearing box approximation,
- 2. mechanical equilibrium,
- 3. gas is locally isothermal,
- 4. filaments are thin.

Simplifying assumptions:

- 1. shearing box approximation,
- 2. mechanical equilibrium,
- 3. gas is locally isothermal,
- 4. filaments are thin.

We end up with a integro-differential equation for the normalized column density $\widetilde{\Sigma}$ in the filament.

$$\frac{\partial_{\widetilde{y}}\widetilde{\Sigma}}{\widetilde{\Sigma}} = \int_{0}^{\widetilde{\Lambda}} \widetilde{\Sigma}(0, y') D(y', \widetilde{y}, \varepsilon) \, \mathrm{d}y' + \widetilde{y}. \tag{1}$$

where

$$D(y, y', \varepsilon) = \frac{y' - y}{(y - y')^2 + \varepsilon^2} - \frac{y' + y}{(y' + y)^2 + \varepsilon^2}$$
(2)

14

1/11/2022

- The model enables to build a sequence of equilibrium (left)
- The model can be fitted to actual filaments in the simulation (top)
- BUT the model cannot explain the slope of the Σ-PDF (profile too stiff, PDF too flat).

Q

Q

Alpha - Q = 3

HD equations

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{u}) = 0, \tag{3}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + \frac{1}{\rho} \boldsymbol{\nabla} \boldsymbol{P} = -\frac{GM}{r^2 + z^2} (\cos(\theta) \boldsymbol{e}_r + \sin(\theta) \boldsymbol{e}_z)$$
(4)

$$\frac{\partial E}{\partial t} + \boldsymbol{\nabla} \left((E + P) \, \boldsymbol{u} \right) = 0 \tag{5}$$

Figure: Coordinate system.

Self-gravity

New source term in Euler equation. Poisson potential:

$$\Delta \phi = -4\pi G \rho$$

Cooling

New source term in energy equation:

$$\frac{\partial E}{\partial t} + \nabla \left(\left(E + P \right) \boldsymbol{u} \right) = -\frac{E_{int}}{t_{cool}}$$

where $E_{int} = E - E_c$ is the internal energy and $E_c = \frac{1}{2}\rho u^2$ is the kinetic energy.

Cooling time $t_{cool} = \beta \Omega^{-1}$

1/11/2022

Initial conditions

Vertical equilibrium

$$\frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{GM\sin(\theta)}{r^2 + z^2} = 0$$

$$\rho(r,z) = \rho_c(r) \exp\left(\frac{GM}{c_s^2} \left(\frac{1}{\sqrt{r^2 + z^2}}\right) - \frac{1}{r}\right)$$

where $ho_c(r)$ is a free parameter chosen so that $\Sigma \propto r^{-1}$

Initial conditions

Radial equilibrium

$$\frac{u_{\varphi}^{2}}{r} = \frac{1}{\rho} \frac{\partial (c_{s}^{2}\rho)}{\partial r} + r \frac{GM}{\left(r^{2} + z^{2}\right)^{3/2}}$$
$$\Omega^{2} = \frac{1}{\rho r} \frac{\partial (c_{s}^{2}\rho)}{\partial r} + \frac{GM}{\left(r^{2} + z^{2}\right)^{3/2}}$$

$$\Omega^{2}(r \leq r_{in}) = \frac{GM}{r^{3}} - \frac{5}{2}\frac{c_{s}^{2}}{r^{2}}$$
$$\Omega^{2}(r > r_{in}) = \frac{GM}{r^{2}\sqrt{r^{2} + z^{2}}} - \frac{7}{2}\frac{c_{s}^{2}}{r^{2}}$$
Fragmentation of self-gravitating disks

- Self-gravitating disks: disks massive enough so that their own gravity plays an significant role.
- Can be found around black holes (galaxies), stars (protoplanetary disks) or planets (circumplanetary disks).
- Fragmentation, when the gas collapse under is own gravity is important for star, planet and moon formation.

Non-convergence of the stability limit

Critical value for β as a function of resolution, Meru & Bate 2012 and Rice et al. 2014.

Non-convergence of the stability limit

Paardekooper 2012, Hopkins 2013: Stochastic aspects

Critical value for β as a function of resolution, Meru & Bate 2012 and Rice et al. 2014.

Non-convergence of the stability limit

Critical value for β as a function of resolution, Meru & Bate 2012 and Rice et al. 2014.

Paardekooper 2012, Hopkins 2013: Stochastic aspects

The simulations are mainly SPH or on 2D fixed-size grid.

"It would be interesting to try to understand the convergence problem with a Godunov scheme" Meru & Bate 2012

Description of the simulations

Code: Ramses

- Finite volumes over a 3D grid.
- Conservative scheme (Godunov).
- Adaptive Mesh refinement.

Description of the simulations

Code: Ramses

- Finite volumes over a 3D grid.
- Conservative scheme (Godunov).
- Adaptive Mesh refinement.

Initial conditions

- As Meru & Bate 2012 for comparaison.
- $M_{\text{disk}} = M_{\star}/10.$
- Equilibrium: $Q(t = 0) \ge 2$.
- TIC : pre-run to have turbulent initial conditions.

Description of the simulations

Code: Ramses

- Finite volumes over a 3D grid.
- Conservative scheme (Godunov).
- Adaptive Mesh refinement.

Initial conditions

- As Meru & Bate 2012 for comparaison.
- $M_{\text{disk}} = M_{\star}/10.$
- Equilibrium: $Q(t = 0) \ge 2$.
- TIC : pre-run to have turbulent initial conditions.

Resolution

Size of a cell $dx = 2^{-l}$ where *l* is the level of refinement.

Grid at l = 6 (box) and l = 10(disk, on 256³ cells) + extra refinement based on jeans length λ_J . Cell refined if $l < l_{max}$ and $dx > 20\lambda_J$.

Group	I_{\max}	Initial cond.
JR11	11	smooth
JR12	12	smooth
JR12_TIC	12	turbulent
JR13_TIC	13	turbulent

Ismfeed Turbox Fragdisk Galturb

Results: movie for $\beta = 7$ (group JR12)

Results: Column density maps

Noé Brucy

Regulation of Star Formation

What shapes the PDF ?

What shapes the PDF ?

What shapes the PDF ?

Noé Brucy

Regulation of Star Formation

28

2

 $\beta = 8$

 $\beta = 12$

 $\beta = 16$

 $log(\sigma)$

Analytical model for the radial profile of filaments

- Model of a infinite filament undergoing pressure, tidal forces and self gravity.
- The model can be fitted to actual filaments in the simulation (top)
- But the radial profile of filaments is not enough to understand the PDF

The PDF is not built radially but alongside filaments

Filaments are collapsing in the azimuthal direction.

31

Heating by gravitational instabilities in ring of mean column density $\overline{\Sigma}$, height *h*, and volume *V*.

$$\alpha_{\rm grav} = \frac{2}{3} \frac{1}{4\pi G} \frac{2h}{\overline{\Sigma} c_s^2 V} \int_V g_r g_\varphi \, \mathrm{d}V. \tag{6}$$

Heating by gravitational instabilities in ring of mean column density $\overline{\Sigma}$, height *h*, and volume *V*.

$$\alpha_{\rm grav} = \frac{2}{3} \frac{1}{4\pi G} \frac{2h}{\overline{\Sigma} c_s^2 V} \int_V g_r g_\varphi \, \mathrm{d}V. \tag{6}$$

Since

$$PDF(\Sigma) = \frac{P_0}{\sigma_0 \overline{\Sigma}} \left(\frac{\Sigma}{\sigma_0 \overline{\Sigma}}\right)^{s-1}.$$
 (7)

32

Heating by gravitational instabilities in ring of mean column density $\overline{\Sigma}$, height *h*, and volume *V*.

$$\alpha_{\rm grav} = \frac{2}{3} \frac{1}{4\pi G} \frac{2h}{\overline{\Sigma} c_s^2 V} \int_V g_r g_\varphi \, \mathrm{d} V. \tag{6}$$

Since

$$\operatorname{PDF}(\Sigma) = \frac{P_0}{\sigma_0 \overline{\Sigma}} \left(\frac{\Sigma}{\sigma_0 \overline{\Sigma}}\right)^{s-1}.$$
 (7)

we can write

$$\alpha_{\rm grav} = \frac{2}{3} \frac{h}{2\pi G c_s^2} \int_{\sigma_0 \overline{\Sigma}}^{\infty} \frac{P_0}{\sigma_0} \frac{g_r g_{\varphi}}{\overline{\Sigma}^2} \left(\frac{\Sigma}{\sigma_0 \overline{\Sigma}}\right)^{s-1} d\Sigma$$
(8)

Heating by gravitational instabilities in ring of mean column density $\overline{\Sigma}$, height *h*, and volume *V*.

$$\alpha_{\rm grav} = \frac{2}{3} \frac{1}{4\pi G} \frac{2h}{\overline{\Sigma} c_s^2 V} \int_V g_r g_\varphi \, \mathrm{d} V. \tag{6}$$

Since

$$\operatorname{PDF}(\Sigma) = \frac{P_0}{\sigma_0 \overline{\Sigma}} \left(\frac{\Sigma}{\sigma_0 \overline{\Sigma}}\right)^{s-1}.$$
 (7)

we can write

$$\alpha_{\rm grav} = \frac{2}{3} \frac{h}{2\pi G c_s^2} \int_{\sigma_0 \overline{\Sigma}}^{\infty} \frac{P_0}{\sigma_0} \frac{g_r g_{\varphi}}{\overline{\Sigma}^2} \left(\frac{\Sigma}{\sigma_0 \overline{\Sigma}}\right)^{s-1} d\Sigma$$
(8)

32

How to explain the $s - \beta$ correlation ? If self-gravity dominates, we can approximate

$$g_r \simeq \varepsilon_r 2\pi G\Sigma$$
 and $g_{\varphi} \simeq \varepsilon_{\varphi} 2\pi G\Sigma$ (9)

where ε_r and ε_{φ} are unknown efficiencies.

How to explain the $s - \beta$ correlation ? If self-gravity dominates, we can approximate

$$g_r \simeq \varepsilon_r 2\pi G\Sigma$$
 and $g_{\varphi} \simeq \varepsilon_{\varphi} 2\pi G\Sigma$ (9)

where ε_r and ε_{φ} are unknown efficiencies. Injecting back into (8),

$$\alpha_{\rm grav} = -\frac{2}{3} \frac{2\pi G \overline{\Sigma} h \varepsilon_r \varepsilon_\varphi}{c_s^2} \frac{\sigma_0^2 P_0}{s+2}.$$
 (10)

33

How to explain the $s - \beta$ correlation ? If self-gravity dominates, we can approximate

$$g_r \simeq \varepsilon_r 2\pi G\Sigma$$
 and $g_{\varphi} \simeq \varepsilon_{\varphi} 2\pi G\Sigma$ (9)

where ε_r and ε_{φ} are unknown efficiencies. Injecting back into (8),

$$\alpha_{\rm grav} = -\frac{2}{3} \frac{2\pi G \overline{\Sigma} h \varepsilon_r \varepsilon_\varphi}{c_s^2} \frac{\sigma_0^2 P_0}{s+2}.$$
 (10)

From the energy balance (cooling = heating),

$$\alpha = \frac{2}{5} \frac{1}{\beta}.$$
 (11)

33

How to explain the $s - \beta$ correlation ? If self-gravity dominates, we can approximate

$$g_r \simeq \varepsilon_r 2\pi G\Sigma$$
 and $g_{\varphi} \simeq \varepsilon_{\varphi} 2\pi G\Sigma$ (9)

where ε_r and ε_{φ} are unknown efficiencies. Injecting back into (8),

$$\alpha_{\rm grav} = -\frac{2}{3} \frac{2\pi G \overline{\Sigma} h \varepsilon_r \varepsilon_\varphi}{c_s^2} \frac{\sigma_0^2 P_0}{s+2}.$$
 (10)

From the energy balance (cooling = heating),

$$\alpha = \frac{2}{5} \frac{1}{\beta}.$$
 (11)

Finally, we retrieve a linear relationship between s and β :

$$\mathbf{s} = -\frac{10}{3}\varepsilon_r\varepsilon_\varphi\sigma_0^2 P_0 \ \beta - 2. \tag{12}$$

