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Stars shape the universe.

▶ Stars represents only a few %
of the mass of a galaxy

▶ But they play a key role in
the galactic ecosystem
▶ gravitational potential
▶ injection of energy via

feedback
▶ metal enrichment

Image Credit: NASA, ESA, CSA, STScI; Processing Copyright: Robert Eder
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Stars forms out of the dense gas of the InterStellar Medium

What is the ISM?
Space between the stars
▶ ∼ 99 % gas (by mass)

(H/HII/H2 70 %, He 28 %)
▶ ∼ 1 % dust grains

Main drivers of the ISM
▶ Hydrodynamics
▶ Gravity
▶ Cooling/Heating
▶ Chemistry
▶ Magnetic field (MHD)
▶ Stars

Image Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team
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The matter cycle in the ISM

data from Draine 2011 

(SN)
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The star formation rate (SFR)

Mass of star formed by unit of time

Observation of the SFR

Far-UV (FUV) rays
Direct emission by massive stars 
A fraction is absorbed

Infrared (IR) rays
Re-emitted by the dust

Observer

Measuring the light emission let us 
know the mass of young massive stars

1

measureddeducted

The initial mass 
function enables to 
recover the total SFR 

2

The Schmidt-Kennicutt law
relation (SK)
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What triggers stops star formation?
because gravity would consume all the gas quickly

SFRgrav ≈ Mdense

tfree−fall
≈ 460 M⊙ · yr−1

≫ SFRobs ≈ 2 M⊙ · yr−1
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What stops star formation?
A natural candidate: stars themselves! (via stellar feedback)

10 pc5 pc 100 pc

Winds

Supernovas

Radiative pressure

Photoionisation
FUV Heating

More stars → more feedback → less star formation. Self-regulation?
Noé Brucy Regulation of Star Formation 1/11/2022 6



I - Introduction II - Kiloparsec simulations III - Full galactic simulations IV - Conclusions

What stops star formation?
Magnetic field

▶ Magnetic pressure

Pmag =
B2

8π

▶ Magnetic tension

Tmag =
(B ·∇)B

4π

Crutcher et al.
Equipartition: Emagnetic ∼ Eturbulent ∼ Ethermal ∼ Estarlight ∼ Edust emission
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What stops star formation?
Turbulence

log(E (k))

log klog ki log kη

Scale of energy injection

Slope of − 5/3

Advection-dominated zone.
Energy cascades down
from large to small scales

Dissipation scale

Richardson cascade for
incompressible turbulence

Turbulence can be composed of
▶ compressive modes

−→
k

▶ or solenoidal modes

Characterized by its strength σ and compressibility χ
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Goals

▶ What is the more efficient
process that quenches star
formation?

▶ What regulates star formation?
▶ It is the same for all galaxies?

Outline

I - Introduction
A - Star Formation
B - Quenching of star
formation

II - Kiloparsec simulations
A - Stellar feedback
B - Large scale turbulence

III - Full galactic simulations
IV - Conclusions
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Physics

Hydrodynamics

Gas gravity

Stars and dark matter gravity

Star formation

Stellar feedback SN HII FUV

Magnetic field

Turbulence σ χ

Scale

Small: < 10 pc
· Atoms: 10−25 pc

⋆ Stars: 10−8 to 10−5 pc

▷◁ Protoplanetary disks: 10−4 pc

• Star clusters: 1 pc

Medium: 1 pc to 1 kpc
⊗ HII regions: 10 pc

⊛ SN shells: 100 pc

Molecular clouds: 100 pc

Large: 100 pc to 20 kpc∮
Galaxy : 10 kpc
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Physics

Hydrodynamics

Gas gravity

Stars and dark matter gravity

Star formation

Stellar feedback SN HII FUV

Magnetic field

Turbulence σ χ

Focus Included Not included

Scale

Small: < 10 pc

Medium: 1 pc to 1 kpc

Large: 100 pc to 20 kpc

Outline
I - Introduction
II - Kiloparsec simulations
III - Disk simulations
IV - Conclusions
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II - Kiloparsec simulations

Brucy+ 2020,
Brucy+ 2022 (subm), with a
glimpse of Brucy & Hennebelle,
2023 (in prep.)

Outline

I - Introduction
A - Star Formation
B - Quenching of star
formation

II - Kiloparsec simulations
A - Stellar feedback
B - Large scale turbulence

III - Full galactic simulations
IV - Conclusions
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Kiloparsec simulations

Goals We focus what quenches the
SFR in dense environments, and in
particular
⋆ Role of stellar feedback
⟲ Role of large scale turbulence
∪ Role of magnetic field

Can these processes explain the
observed SFR from the
Schmidt-Kennicutt (SK) relation?
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Main simulation setup

1 kpc

1
kp

c

Roughly similar setup:
FRIGG, TIGRESS, SILCC.

MHD simulations with Ramses

▶ MHD equations + cooling
▶ Star formation and feedback
▶ No very hot gas (> 106 K)

Initial conditions

▶ ρ(z) = n0 exp

(
−1

2

(
z
z0

)2
)

▶ Stellar and dark matter potential

▶ Bx(z) = B0 exp

(
−1

2

(
z
z0

)2
)
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Physics

Hydrodynamics

Gas gravity

Stars and dark matter gravity

Star formation

Stellar feedback SN HII FUV

Magnetic field

Turbulence σ χ

Focus Included Not included

Scale

Small: < 10 pc

Medium: 1 pc-1 kpc

Large: 100 pc to 20 kpc

Outline

II - Kiloparsec simulations
A - Stellar feedback
B - Large scale turbulence
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A - With only stellar feedbacks
Σ = 38.7 M⊙ · pc−2. Face on views of column density (left) and midplane density (right).

Noé Brucy Regulation of Star Formation 1/11/2022 14



I - Introduction II - Kiloparsec simulations III - Full galactic simulations IV - Conclusions

A - With only stellar feedbacks
Column density maps
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A - With only stellar feedbacks
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Stellar feedback is sufficient in Milky-Way like galaxies ... BUT is
too weak in high-z galaxies.
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B - The influence of larger-scale dynamics: turbulent driving

f (x , t) = frms×
∫

f̂ (k , t)e ik·xd3k

Turbulence from galactic dynamics

▶ Spirals, mass transfert →
turbulence (eg. Krumholz+ 2018)

▶ Expected injected power:
PLS ∝ Σ4

g or PLS ∝ Σ2.5
g

Model
An extra 2D force is added to
generate random motion at scales
between 300 and 1000 pc.
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Physics
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Gas gravity
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Scale
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II - Kiloparsec simulations
A - Stellar feedback
B - Large scale turbulence
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Power needed to retrieve the Schmidt-Kennicut relation
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Stellar feedback is not powerful enough to quench star formation.
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Conclusion of part II

⋆ Role of stellar feedback.
⋆ Not powerful enough to quench star

formation in gas-rich galaxies
⟲ Role of large scale turbulence.

⟲ A suitable candidate for gas-rich
galaxies

⟲ Increase speed dispersion and
anisotropy

⟲ Solenoidal driving 10x more efficient 0.5 1.0 1.5 2.0 2.5
log(  [M .pc 2])
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IV - Full galactic simulations

Outline

I - Introduction
A - Star Formation
B - Quenching of star
formation

II - Kiloparsec simulations
A - Stellar feedback
B - Large scale turbulence

III - Full galactic simulations
IV - Conclusions
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Constraining the turbulent driving
Is the turbulence we inject realistic ?
What would be a realistic turbulent driving at these scales for gas-rich
galaxies?
▶ analytical models (gravoturbulence (Nusser+2022), radials motions

(Krumholtz+2018), accretion from outside the galaxy (Forbes+2022))
▶ observational constraints (PHANGS, Sun+2022),
▶ galactic scale simulations.

Work in progress: galactic scale simulations and measure turbulence
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Column density maps

Gas Fraction: 20 % 30% 40%
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First insights
Sectors extraction
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SFR and Schmidt-Kennicutt law
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Comparison between kpc boxes and full galaxy simulations
Preliminary results on velocity dispersion for a galaxy with 30 % gas fraction
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Comparison between kpc boxes and full galaxy simulations
Preliminary results on velocity dispersion for a galaxy with 30 % gas fraction
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Turbulence is less strong and anisotropic than our requirements in
kpc simulations
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Summary

▶ Feedback regulation is suitable in
Milkay-way like galaxies but not in
higher column density environnments,

▶ The turbulence from large scale motions
in the galaxy interacts

▶ Galactic simulations can be used to
constrain turbulent driving at the
kiloparsec scale.
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Perspective

▶ Completion of the parameter study at the kiloparsec scale
▶ Better understanding of the turbulence injection

▶ Fourier analysis of the galactic scale simulation
▶ Tracking where the turbulent energy come from
▶ Add magnetic field

▶ How much the SFR is quenched? (this work) → How?
▶ Work on the link between SFR and turbulence
▶ Similar work on feedback
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Physics

Hydrodynamics

Gas gravity

Stars and dark matter gravity

Star formation

Stellar feedback SN HII FUV

Magnetic field

Turbulence σ χ

Scale

Small: < 10 pc

Medium: 1 pc to 1 kpc

Large: 100 pc to 20 kpc
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Ismfeed Turbox Fragdisk Galturb

Appendix

Turbox
Fragdisk

Model for radial profiles
Q
Numerical turbulence
Equations
Initial conditions
Context & SOA
More results

Galturb
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With only stellar feedbacks
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Is stellar feedback needed ?
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Stellar feedback is necessary, but its importance decreases as the
gas column density increases.
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The influence of larger-scale dynamics: turbulent driving

f (x , t) = frms×
∫

f̂ (k , t)e ik·xd3k

Turbulence from galactic dynamics

▶ Spirals, mass transfert →
turbulence (eg. Krumholz+ 2018)

▶ Expected injected power:
PLS ∝ Σ4

g or PLS ∝ Σ2.5
g

Model
An extra 2D force is added to
generate random motion at scales
between 300 and 1000 pc.
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The influence of larger-scale dynamics: turbulent driving
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The influence of larger-scale dynamics: turbulent driving
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PLS ∝ Σ4

g or PLS ∝ Σ2.5
g

Model
An extra 2D force is added to
generate random motion at scales
between 300 and 1000 pc.
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The influence of larger-scale dynamics: turbulent driving
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With large-scale turbulence driving
Σ = 38.7 M⊙ · pc−2, strong driving. Face on views of column density
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Can we reproduce Schmidt-Kennicutt with turbulence
driving?
Column density maps
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High magnetic field

0.5 1.0 1.5 2.0 2.5
log(  [M .pc 2])

3

2

1

0

1

lo
g(

SF
R [

M
.y

r
1 .

kp
c

2 ]
)

N = 1.4

Kennicutt+2012 (Normal/irregular)
TURB_HB (doubled B0)
TURB_BVAR (B0 )
NOTURB_HB (doubled B0)

101 102

0, gas [M .pc 2]

1028

1029

1030

1031

1032

1033

1034

1035

In
je

ct
ed

 tu
rb

ul
en

t p
ow

er
 [W

]

Power from large scales
Power from supernovae

TURB (driven turbulence)
TURB_HB (doubled B0)
TURB_BVAR (B0 )

Even with higher B field, we cannot reproduce SK without injecting
turbulence

Noé Brucy Regulation of Star Formation 1/11/2022 7



Ismfeed Turbox Fragdisk Galturb

Velocity dispersion
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A word about velocity dispersion
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Velocity dispersion measured in the simulations, where
σ2D =

√
σ2
x + σ2

y/
√

2.

The simulations with high 2D turbulent driving show a high
anisotropy, while simulations without driving are almost isotropic.
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Apodized Driving
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Further study (WIP): Link between SFR and turbulence
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Further study (WIP): Link between SFR and turbulence
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Further study (WIP): Link between SFR and turbulence
Using an idealized turbulent box

p(log ρ)

log ρ/ρ0log ρcrit/ρ0

Power-law,
generated by gravity

Gas bound to form stars

Lognormal PDF,
generated by turbulence
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My simulations
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▶ Goal: improve existing analytical SFR models for higher Mach number.
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Analytical model for filaments

▶ First try : pure hydrostatic model
▶ only self-gravity and pressure.
▶ We solved the Lame-Emden equations for a

cylindrical distribution.
▶ Does not convincingly match the simulations

Central object

Filamentr0
C

rF F

y

xr0
C

rF F

gfil

towards the
central object

Rfil

fp,fil

shearing box

∂ỹ Σ̃

Σ̃
=

∫ Λ̃

0
Σ̃(0, y ′)D(y ′, ỹ , ε) dy ′ + ỹ . (1)

where

D(y , y ′, ε) =
y ′ − y

(y − y ′)2 + ε2
− y ′ + y

(y ′ + y)2 + ε2 (2)
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Analytical model for filaments

Support due to differential rotation plays a role ! Central object
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where

D(y , y ′, ε) =
y ′ − y

(y − y ′)2 + ε2
− y ′ + y

(y ′ + y)2 + ε2 (2)
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Analytical model for filaments

Simplifying assumptions:
1. shearing box approximation,
2. mechanical equilibrium,
3. gas is locally isothermal,
4. filaments are thin.

We end up with a integro-differential equation for
the normalized column density Σ̃ in the filament.
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Analytical model for filaments
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▶ The model enables to build a sequence
of equilibrium (left)

▶ The model can be fitted to actual
filaments in the simulation (top)

▶ BUT the model cannot explain the slope
of the Σ-PDF (profile too stiff, PDF too
flat).
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Alpha - Q = 3
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HD equations

∂ρ

∂t
+∇ · (ρu) = 0, (3)

∂u
∂t

+ u · ∇u +
1
ρ
∇P = − GM

r2 + z2 (cos(θ)er + sin(θ)ez) (4)

∂E
∂t +∇

(
(E + P)u

)
= 0 (5)

Figure: Coordinate system.
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Self-gravity

New source term in Euler equation. Poisson potential:

∆ϕ = −4πGρ

Cooling

New source term in energy equation:

∂E

∂t
+∇

(
(E + P)u

)
= − Eint

tcool

where Eint = E − Ec is the internal energy and Ec =
1
2
ρu2 is the kinetic

energy.

Cooling time tcool = βΩ−1
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Initial conditions

Vertical equilibrium

1
ρ

∂P

∂z
+

GM sin(θ)

r2 + z2 = 0

ρ(r , z) = ρc(r) exp

(
GM

c2
s

(
1√

r2 + z2

)
− 1

r

)

where ρc(r) is a free parameter chosen so that Σ ∝ r−1
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Initial conditions

Radial equilibrium

u2
φ

r
=

1
ρ

∂(c2
s ρ)

∂r
+ r

GM(
r2 + z2

)3/2
Ω2 =

1
ρr

∂(c2
s ρ)

∂r
+

GM(
r2 + z2

)3/2
Ω2(r ≤ rin) =

GM

r3 − 5
2
c2
s

r2

Ω2(r > rin) =
GM

r2
√
r2 + z2

− 7
2
c2
s

r2
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Fragmentation of self-gravitating disks

▶ Self-gravitating disks: disks massive
enough so that their own gravity plays
an significant role.

▶ Can be found around black holes
(galaxies), stars (protoplanetary disks)
or planets (circumplanetary disks).

▶ Fragmentation, when the gas collapse
under is own gravity is important for
star, planet and moon formation.
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Non-convergence of the stability limit

unfragmented
fragmented

Critical value for β as a function of
resolution, Meru & Bate 2012 and Rice
et al. 2014.

Paardekooper 2012, Hopkins 2013:
Stochastic aspects

The simulations are mainly SPH or
on 2D fixed-size grid.

“It would be interesting to try to
understand the convergence problem
with a Godunov scheme”
Meru & Bate 2012
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Description of the simulations

Code: Ramses

▶ Finite volumes over a 3D grid.
▶ Conservative scheme

(Godunov).
▶ Adaptive Mesh refinement.

Initial conditions

▶ As Meru & Bate 2012 for
comparaison.

▶ Mdisk = M⋆/10.
▶ Equilibrium: Q(t = 0) ≥ 2.
▶ TIC : pre-run to have

turbulent initial conditions.

Resolution
Size of a cell dx = 2−l where l is
the level of refinement.

Grid at l = 6 (box) and l = 10
(disk, on 2563 cells) + extra
refinement based on jeans length
λJ . Cell refined if l < lmax and
dx > 20λJ .

Group lmax Initial cond.
JR11 11 smooth
JR12 12 smooth
JR12_TIC 12 turbulent
JR13_TIC 13 turbulent
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Results: movie for β = 7 (group JR12)
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Results: Column density maps
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What shapes the PDF ?
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What shapes the PDF ?
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What shapes the PDF ?
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Analytical model for the radial profile of filaments

Central object
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= 8, time = 4.5 ORP

▶ Model of a infinite filament undergoing
pressure, tidal forces and self gravity.

▶ The model can be fitted to actual
filaments in the simulation (top)

▶ But the radial profile of filaments is not
enough to understand the PDF
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How to explain the s − β correlation ?
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The PDF is not built radially but alongside filaments

Radial collapse Azimuthal collapse

Filaments are collapsing in the azimuthal direction.
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How to explain the s − β correlation ?

Heating by gravitational instabilities in ring of mean column density Σ,
height h, and volume V .

αgrav =
2
3

1
4πG

2h
Σc2

s V

∫
V
grgφ dV . (6)

Since

PDF(Σ) =
P0

σ0Σ

(
Σ

σ0Σ

)s−1

. (7)

we can write

αgrav =
2
3

h

2πGc2
s

∫ ∞

σ0Σ

P0

σ0

grgφ

Σ
2

(
Σ

σ0Σ

)s−1

dΣ (8)

Noé Brucy Regulation of Star Formation 1/11/2022 32



Ismfeed Turbox Fragdisk Galturb

How to explain the s − β correlation ?

Heating by gravitational instabilities in ring of mean column density Σ,
height h, and volume V .

αgrav =
2
3

1
4πG

2h
Σc2

s V

∫
V
grgφ dV . (6)

Since

PDF(Σ) =
P0

σ0Σ

(
Σ

σ0Σ

)s−1

. (7)

we can write

αgrav =
2
3

h

2πGc2
s

∫ ∞

σ0Σ

P0

σ0

grgφ

Σ
2

(
Σ

σ0Σ

)s−1

dΣ (8)

Noé Brucy Regulation of Star Formation 1/11/2022 32



Ismfeed Turbox Fragdisk Galturb

How to explain the s − β correlation ?

Heating by gravitational instabilities in ring of mean column density Σ,
height h, and volume V .

αgrav =
2
3

1
4πG

2h
Σc2

s V

∫
V
grgφ dV . (6)

Since

PDF(Σ) =
P0

σ0Σ

(
Σ

σ0Σ

)s−1

. (7)

we can write

αgrav =
2
3

h

2πGc2
s

∫ ∞

σ0Σ

P0

σ0

grgφ

Σ
2

(
Σ

σ0Σ

)s−1

dΣ (8)

Noé Brucy Regulation of Star Formation 1/11/2022 32



Ismfeed Turbox Fragdisk Galturb

How to explain the s − β correlation ?

Heating by gravitational instabilities in ring of mean column density Σ,
height h, and volume V .

αgrav =
2
3

1
4πG

2h
Σc2

s V

∫
V
grgφ dV . (6)

Since

PDF(Σ) =
P0

σ0Σ

(
Σ

σ0Σ

)s−1

. (7)

we can write

αgrav =
2
3

h

2πGc2
s

∫ ∞

σ0Σ

P0

σ0

grgφ

Σ
2

(
Σ

σ0Σ

)s−1

dΣ (8)

Noé Brucy Regulation of Star Formation 1/11/2022 32



Ismfeed Turbox Fragdisk Galturb

How to explain the s − β correlation ?
If self-gravity dominates, we can approximate

gr ≃ εr2πGΣ and gφ ≃ εφ2πGΣ (9)

where εr and εφ are unknown efficiencies.

Injecting back into (8),

αgrav = −2
3

2πGΣhεrεφ
c2
s

σ2
0P0

s + 2
. (10)

From the energy balance (cooling = heating),

α =
2
5

1
β
. (11)

Finally, we retrieve a linear relationship between s and β:

s = −10
3
εrεφσ

2
0P0 β − 2. (12)
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