Probing new physics with reactor (anti)neutrinos

Rudolph Rogly

Department of Nuclear Physics, CEA-Saclay/Irfu

The STEREO experiment

Reactor (anti)neutrinos anomalies

In nuclear reactors, $\bar{\nu}_e$ emitted from the β decay of fission fragments:

- > Research reactors Highly Enriched in Uranium (HEU) : pure ²³⁵U fuel
- Commercial reactors Lowly Enriched in Uranium (LEU) : mixed ²³⁵U + Pu (+ ²³⁸U) fuel

Nature Physics 16, pp. 558–564 (2020)

Progress in Particle and Nuclear Physics 111, 103736 (2020)

Biased prediction or new physics ?

Rate anomaly and sterile neutrino

Short-baseline deficit ↔ Signature of a new oscillation ?

STEREO provides a complete study of all anomalies for a pure ²³⁵U antineutrino spectrum (HEU experiment).

STEREO experiment

 $\begin{array}{ll} \underline{\textit{Detection Principle}}: \text{Inverse beta-decay (IBD)}\\ \overline{\nu}_e + p \ \rightarrow e^+ + n & E_{\overline{\nu}_e} = E_{e^+} - 0.\,782 [\text{MeV}] \end{array}$

- Insights on the pure contribution of ²³⁵U to the reactor anomalies.
- □ Test of sterile hypothesis, with a modelindependent oscillation analysis.
- Precision measurement of the absolute antineutrino rate and spectrum shape.

- Antineutrino source: HEU research reactor of Institut Laue-Langevin (Grenoble, France).
- Very short-baseline (9-11m) & Compact core + Segmented detector, with 6 identical cells.
- Accurate determination of the detector response.

Photo: II I

Control of detector response

Energy scale derived from a **global fit** of:

□ Calibration data taken with point-like radioactive sources in each cell, at different heights.

□ Cosmogenic ¹²B beta spectrum ($Q_\beta = 13.4$ MeV).

Data-MC residuals contained within a ±1% band for all cells Phys. Rev. D, 102:052002, 2020

Improvement of the MC gamma cascade after a n-capture in Gd with the FIFRELIN code *arXiv:2207.10918* 3 years of data taking...

 $< S: B > \sim 1 \leftrightarrow 274$ days-ON and 520 days-OFF for background subtraction.

Analysis of STEREO data

STEREO sterile neutrino search

- Prediction-free analysis.
- 2D Feldman-Cousins and CLs approaches → Compatible results
- **No-oscillation hypothesis not rejected** (p-value = 0.52).
 - > RAA best fit excluded at $\sim 4\sigma$.
 - > Neutrino-4 best fit excluded at $\sim 3.3\sigma$.

arXiv:2210.07664

Sterile neutrino hypothesis disfavored with high CL.

STEREO ²³⁵U spectrum – Unfolding procedure

Goal: Provide a reference ²³⁵U antineutrino spectrum in antineutrino energy space, free of detector effects.

STEREO ²³⁵U spectrum – Rate analysis

Global deficit w.r.t. Huber prediction for 235 U:

 $(5.5 \pm 2.1 [stat + syst])\%$

Most accurate measurement of ²³⁵U fission yield, in agreement with the world average.

arXiv:2210.07664

STEREO ²³⁵U spectrum – Shape analysis

$$Pred_{A,\mu,\sigma}(E) = HM(E) \cdot \alpha \left(1 + A \cdot \exp \frac{(E-\mu)^2}{2\sigma^2}\right)$$

- > **Unbiased** minimization of: $\chi^{2}(A, \mu, \sigma) = (\Phi - A_{c} \cdot Pred_{A,\mu,\sigma})^{T} V_{\Phi}^{-1} (\Phi - A_{c} \cdot Pred_{A,\mu,\sigma})$
- Local event excess wrt. Huber around 5.5 MeV for ²³⁵U with 4.6 σ significance.

 $A = (15.6 \pm 5.2) \%$ $\mu = (5.500 \pm 0.092) \text{ MeV}$ $\sigma = (0.308 \pm 0.143) \text{ MeV}$ Global analysis of reactor \bar{v}_e spectra

HEU + LEU Global shape analysis

- ²³⁵U data from the PROSPECT experiment (~ $50 \text{k} \, \bar{\nu}_e$) *Phys. Rev. Lett.* 122, 251801
- $^{235}U + Pu$ global data from the Daya Bay experiment (~ $3500 \text{k} \,\overline{\nu}_e$) Chin. Phys. C, 45:073001, 2021

Conclusions

Most accurate measurement of the ²³⁵U spectrum to date, providing a **complete study of the reactor anomalies:**

- > Sterile neutrino hypothesis disfavored.
- > $(5.5 \pm 2.1)\%$ rate deficit observed in ²³⁵U pointing to a **biased** prediction normalization as the main origin of the RAA.
- > 4.6 σ local distortion around 5.5 MeV, with unbiased best-fit params.
- \succ Extension to a global analysis of ²³⁵U + Pu data.

Precise reference antineutrino spectrum from the fission of ²³⁵U:

- □ Spectrum expressed in true antineutrino energy available for the upcoming high precision reactor antineutrino experiments.
- □ Shift of paradigm: precision of the direct neutrino measurements constrains the nuclear observables. Latest summation model calculations showed the critical impact of the correction of the pandemonium effect.

arXiv.2205.14954

The NUCLEUS experiment

NUCLEUS: a CE ν NS experiment

- □ CE ν NS : neutral current interaction with sub-keV nuclear recoil \rightarrow Ultralow threshold technology (cryogenic calorimeters – 20 eV threshold).
- $\Box \ \sigma_{CE\nu NS} \propto N^2$: potential for enhanced neutrino detection efficiency wrt. standard IBD channel.
- Good knowledge of reactor antineutrino spectrum + Measurement of a new neutrino-matter interaction → **low energy probe of the SM**.

Expected background

- Low counting rate expected for the signal → requires efficient background rejection.
- Background dominated by atmospheric neutrons and muons.
- I worked on the rejection of the atmospheric muon background → Full commissioning of the muon veto prototype JINST 17 T05020

5cm-thick plastic scintillator

Characterization of the panel performance

□ Satisfactory gamma/muon separation:

> Key point to ensure a moderate dead-time

Geometrical simulation to derive the overall efficiency of the NUCLEUS muon veto:

99.7% muon tagging efficiency
 V. Savu, PhD thesis (2021)

Quantification of the light yield and response homogeneity, for each optical fiber configuration.

Fiber Configuration	PE Yield [PE/MeV]	Inhomogeneities
Straight (double-sided)	~ 47	~ 2%
U-turn (one-sided)	~ 32	~ 11%
Straight + mirrors (one-sided)	~ 30	~ 30%

Outlook

Upcoming blank assembly in Munich and first physics run in 2024 !

All thanks go to the mounting team and the « Bureau d'Études » (Loris, Nicolas, Gilles) !

Thank you for your attention !

Back-up

Neutrino oscillations

$arDelta m_{21}^2$ [eV²]	$arDelta m_{31}^2$ [eV²]			
$7.4 \cdot 10^{-5}$	$2.5 \cdot 10^{-3}$			
Y ∼ factor 30 discrepant				
\rightarrow Decoupling of oscillation regimes				

$\sin^2 m{ heta}_{12}$	$\sin^2 heta_{23}$	$\sin^2 \theta_{13}$
~ 0.3	~ 0.4	~ 0.02

Reactor (anti)neutrino spectrum

Reactor Antineutrino Flux

²³⁵U-only (HEU)

Emitted $\bar{\nu}_e$ spectrum given by:

Summation » method

Sum up the $\bar{\nu}_e$ spectrum of all β^- decay branches of all fission fragments, based on the nuclear data bases:

$$S(E_{\overline{\nu}_e}) = \sum_k f_k \cdot \sum_n A_n^k \cdot \sum_i B_n^i \cdot S_n^i(E_{\overline{\nu}_e})$$

> Drawback: suffers from *incompleteness* and *biases* of data bases.²⁵

Reactor (anti)neutrino spectrum

Reactor Antineutrino Flux

- β^- decay of fission fragments from:
- ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu (**LEU**)
- ²³⁵U-only (HEU)

Emitted $\bar{\nu}_e$ spectrum given by:

a « Conversion » method

Measure the aggregate e⁻ spectrum for ²³⁵U, ²³⁹Pu and ²⁴¹Pu (HFR, ILL – 1980s) / for ²³⁸U (FRM, Garching – 2014)

Convert into an $\bar{\nu}_e$ spectrum, by fitting the e^- spectrum with a set of **30 virtual** β **branches**

Updated conversion procedure

Huber-Mueller model — PRC 84, 024617 (2011), PRC 83, 054615 (2011)

STEREO Detector Response

Antineutrino signal extraction

Pulse Shape Discrimination (PSD)

- > PSD spectrum of **reactor-ON** and **reactor-OFF** data.
- Proven to be very stable in shape and anti-correlation of rate with P_{atm} accounted for by a free normalization parameter a.
- Gaussian fit to extract the neutrino signal in the e-recoil region.

Signal-to-background ratio

S/B ratio

Simultaneous Fit of Source points + continuous ¹²B spectrum

<u>Calibration</u>:

$$R_{calib}^{estimator}\left(E_{rec}^{pred}\right) = \frac{E_{rec}^{data}}{E_{rec}^{pred}} - 1 = \delta(E)$$

¹²B Spectrum:

$$R_{spec}^{estimator}\left(E_{rec}^{pred}\right) = \mathbf{1} - \boldsymbol{\delta}(E) - E\boldsymbol{\delta}(E) \frac{\left(S_{12B}^{pred}\right)'(E)}{S_{12B}^{pred}(E)} - E\boldsymbol{\delta}'(E)$$

G. Mention et al., Phys. Lett. B 773, 307-312 (2017) 30

Systematics summary

b.	Oscillation	analysis	systematics

Type	Source	Nuisance	Uncertainty	Correlations		
турс	Source	parameter	Oncertainty	Energy	Cell	Phase
Energy scale	Energy reconstruction	$\alpha_l^{\mathrm{EscaleC}}$	1%	1	0	1
Ellergy scale	Time stability	$lpha^{ m EscaleU}$	0.25%	1	1	0
Signal	Selection cuts	$lpha^{ m Cuts}$	0% to 2%	1	1	1
	Reactor background	$\alpha_l^{ m ReactorBg}$	5% to 0%	1	0	1
	Relative cell volume	NormU	0.83%	1	0	1
Normalization	Neutron efficiency	α_l	0.63%	1	0	0.91
	Relative norm ph-2/ph-3	$\alpha^{\rm II \ vs \ III \ norm}$	1.5%	1	1	-

Prediction-free analysis

STEREO ²³⁵U measured spectrum

Impact of regularization

GCV criterion / Filter matrix

Solution of the Tikhonov unfolding

$$\hat{\Phi} = \left(R^T V^{-1} R + \lambda M \right)^{-1} R^T V^{-1} D$$

:= $H(\lambda) D$

$$H(\lambda) = \left(R^T V^{-1} R + \lambda M\right)^{-1} R^T V^{-1}$$

$$H(\lambda) = \underbrace{\left(I_{N_{\Phi}} + \lambda \left(R^T V^{-1} R\right)^{-1} M\right)^{-1}}_{:=A_c(\lambda)} \cdot H(0)$$

GCV criterion

Filtered Models vs Models

STEREO-II-III-PROSPECT-DB Filtered Model vs. Model

STEREO-II-III-PROSPECT-DB Filtered Model vs. Model

STEREO shape analysis

$$Pred(E) = HM(E) \cdot \alpha \left(1 + A \cdot \exp \frac{(E - \mu)^2}{2\sigma^2}\right)$$

ST-II-III Bost-fit	Antineutrino Energy space		Reconstructed Energy space
bump	w/o. Filter $\chi^2 = (\Phi - Pred)^T V_{\Phi}^{-1} (\Phi - Pred)$	w. Filter $\chi^{2} = (\Phi - A_{c} \cdot Pred)^{T} V_{\Phi}^{-1} (\Phi - A_{c} \cdot Pred)$	w. Response $\chi^2 = (D - R \cdot Pred)^T V^{-1} (D - R \cdot Pred)$
A [%]	14.4 ± 3.6	15.6 ± 5.2	15.5 ± 5.1
μ [MeV]	5.505 ± 0.089	5.500 ± 0.092	5.500 ± 0.092
σ [MeV]	0.339 ± 0.112	0.308 ± 0.143	0.311 ± 0.143
Significance	4.6σ	4.6σ	4.6σ

 $(\Phi, V_{\Phi}, A_{c}) \leftrightarrow (D, V, R)$

HEU + LEU Global analysis

PROSPECT

experiment:

HEU

PROSPECT Detector

235

Daya Bay Detector

38

3500k $\overline{\nu}_e$

HEU + LEU Global analysis : Daya Bay experiment

HEU + LEU Global analysis : PROSPECT spectrum

□ Hints for local event excess around 5 MeV.

□ No absolute normalization of PROSPECT spectrum. → Normalized to STEREO spectrum.

$$\Box \text{ Minimization of the } \chi^2:$$

$$\chi^2(\Phi) = \left| \left| D_{HEU} - R_{HEU} \cdot \Phi \right| \right|_{V_{HEU}}^2 + \lambda * \left| \left| \Phi \right| \right|_{M_{HM}}^2$$
where: $D = \left[\frac{D_{ST-U+UU}}{2} - R_{HEU} - \frac{R_{ST-U+UU}}{2} \right]$

where:
$$D_{HEU} = \begin{bmatrix} D_{ST-II+III} \\ D_{PR} \end{bmatrix}$$
, $R_{HEU} = \begin{bmatrix} R_{ST-II+III} \\ R_{PR} \end{bmatrix}$

Update of the joint STEREO-PROSPECT analysis of PRL 128, 081802 (2022) with the full STEREO dataset.

$\left X \right _{M}^{2}$	$\coloneqq X^T M X$
------------------------------	---------------------

HEU + LEU Global analysis

□ Minimize analytically:

$$\chi^{2}(\Phi^{U5}, \Phi^{Pu}) = ||D_{HEU} - R_{HEU} \cdot \Phi^{U5}||_{V_{HEU}^{-1}}^{2} \qquad) \text{HEU Data} + ||D_{DB} - R_{DB} \cdot (\langle f_{235} \rangle \Phi^{U5} + (\langle f_{239} \rangle + \langle f_{241} \rangle) \Phi^{Pu} + \langle f_{238} \rangle \Phi^{U8}_{HM})||_{V_{DB}^{-1}}^{2} \qquad) \text{LEU Data} + \lambda^{U5} \cdot ||\Phi^{U5}||_{M_{HM}^{U5}}^{2} \qquad + \lambda^{Pu} \cdot ||\Phi^{Pu}||_{M_{HM}^{Pu}}^{2} \qquad) \text{Regularization}$$

 λ^{U5} tuned with GCV criterion.

Heuristic criterion to set Pu regularization strength, beyond the standard GCV criterion

$$\frac{\lambda^{Pu}}{\lambda^{U5}} = \frac{\operatorname{Trace}(M_{HM}^{U5}) \cdot \operatorname{Trace}\left((< f_{239} > + < f_{241} >)^2 \cdot R_{DB}^T V_{DB}^{-1} R_{DB}\right)}{\operatorname{Trace}(M_{HM}^{Pu}) \cdot \operatorname{Trace}(R_{ST}^T V_{ST}^{-1} R_{ST} + R_{PR}^T V_{PR}^{-1} R_{PR} + < f_{235} >^2 \cdot R_{DB}^T V_{DB}^{-1} R_{DB})} \sim 0.1$$

Regularization power in HEU+LEU unfolding

Same regu. strengths but different regu. powers Different regu. strengths but same regu. powers

HEU + LEU Global rate analysis (HEU = ST)

This work vs. Daya Bay analysis

²³⁵U comparison

Pu comparison

Identification and Separation power

□ Satisfactory gamma/muon separation.

- Large plateau to set the detection threhold
- Key point to ensure a moderate dead-time
- \Box Muon identification power of one panel ~ 97%.

Response homogeneity

- Mounting of the test stand, to select local muon events in the prototype panel.
- GEANT4 simulation of the test bench, coupled to a simple poissonian response model, to compare the simulation and the data.

5 cm

0.5 cm

0.5 cm

SiPM

45 cm

0.15 cm 1

6 cm

pool

160 cm

Top panel

Small

Bottom panel

scintillator

fibers

Ø 4.2 cm

probed volume

120 cm

4.2 cm

Middle panel

PMT

5 cm

28 cm

SiPM

PMT

38.5 cm

15 cm

Response homogeneity

Quantification of the response homogeneity, for each optical fiber configuration.

Fiber Configuration	PE Yield [PE/MeV]	Inhomogeneities
Straight (double-sided)	~ 47	~ 2%
U-turn (one-sided)	~ 32	~ 11%
Straight + mirrors (one-sided)	~ 30	~ 30%

Double-sided and U-turn configurations meet the specifications.

