ThomX: Building a Compact Compton Light source

Nicolas Delerue, IJCLab

+ the ThomX collaboration

Overview

- ► ThomX is a compact light source based on Compton scattering being built at IJCLab
- Small Footprint ~ 200m²
- Being commissioned (subject to Nuclear Safety Authority clearance):
 Linac started in 2021
 Ring + transfer lines started in August 2022

Users

Applications:

- The X-ray yield of ThomX is lower than that of 3rd generation synchrotron radiation facility.
- However it is also much more compact
 can fit in smaller space such as those that can be found in museums or hospitals.
- Possible applications:
 - Heritage studies
 - Artwork
 - Medical
 - Quasi-Monochromatic X-rays applications
- Several workshop have taken place to define the first experiments.

Applications: Studies of historical artefact

- ► ThomX will allow to perform similar studies on art work as those done on one synchrotron radiation sources
 - Identification of some atomic compound of the paint
 - Identifying hidden drawing on the canvas
- Pioneering studies made at DESY on Van Gogh paintings (see image)
- Possibility to have the accelerator near the museum in a dedicated facility
- There is already an accelerator used for heritage studies at the Louvres museum but it is an ion accelerator => complementary machines

Applications: Phase contrast microscopy

- Phase contrast microscopy will be possible with the ThomX beam
- Allows to see very thin structures such as lung membranes.

ThomX status

- Like all accelerators in France, conditioned by clearance from the French Nuclear Safety Authority (ASN)
- Initial authorization (Spring 2021) was for the linac only.
- Additional authorization in August 2022 to bring the beam to the extraction dump and the ring.
- A new authorization will be required to extract the X-rays and increase the rep rate (50Hz instead of 10Hz at the moment).

Linac commissioning (October 2021)

Figure 1: Image retrieved from the YAG:Ce sreen light emission from the electron beam at the exit of the RF gun (Top) and at the linac exit (Bottom) the 6th of october 2021.

Figure 2: Raw ICT signal versus time at the gun exit (blue) and at the linac exit (red) taken the 6th of October 2021.

Figure 3: Charge and kinetic energy measured at the exit of the RF gun versus its RF phase the 30th of May 2022. The energy measurements were provided by a steerer and a screen spaced by 0.77 m.

Ring commissioning (Autumn 2022)

First turn:

Outlook

- ThomX is designed as a compact light source that could fit in space where a synchrotron radiation source is not suitable.
- Commissioning is going well:
 - beam storage in the ring achieved in December 2022.
 - Progress limited by what the Nuclear Safety Authorization allows us to do.
- Next step: laser resonator commissioning
- ► Hopefully after summer 2023: X-rays outside the bunker
- Collaboration are welcome to optimize the machine.

