Surrogate Model for Linear Accelerator

LinacNet: A fast Neural Network Approximation of ThomX simulations

Emmanuel Goutierre^{1,2}

H Guler¹ C Bruni¹ J. Cohen², M. Sebag²

Monday 12th December 2022

¹Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)

²Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)

Table of Contents

Context and Defintions

Surrogate Models

Conclusion

Table of Contents

Context and Defintions

Surrogate Models

Conclusion

ThomX: A Compact Compton Source

Figure: Linac of ThomX.

ThomX

- X-ray source by Compton backscattering
- Compact Accelerator (70m²)
- In commissioning at the IJCLab since May 2021

Linac

Accelerate the electron beam up to 50 MeV

Goal

Use machine learning to tackle the problem of adjusting the Linac parameters to fulfill the beam requirements for the transfer line.

\mathcal{A} : Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

A: Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

B: Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

\mathcal{A} : Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

\mathcal{O} : Observables

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

\mathcal{B} : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

00000

A: Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

\mathcal{O} : Observables

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

B: Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

F: Objective function

- Quality of the beam
- Function of (A, B)

\mathcal{A} : Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

\mathcal{B} : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

\mathcal{O} : Observables

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

F: Objective function

- Quality of the beam
- Function of (A, B)

Goal

- ullet Optimize A depending on B to get minimal F with the aid of ${\mathcal O}$
- Currently: manual tuning, heavy load on expert

Context: Machine and Simulation Tools

On the Machine

- B unknown
- Only partial information with O
- F not directly measurable

Computation time on the machine

- **9** Set A and measure $O: \sim 1$ sec.
- 2 Estimation of F: ~ 10 min.
- Collective Schedule

¹Pöplau, Van Rienen, and Floettmann, "3D space charge calculations for bunches in the tracking code Astra".

Context: Machine and Simulation Tools

On the Machine

- B unknown
- Only partial information with O
- F not directly measurable

Computation time on the machine

- Set A and measure $O: \sim 1$ sec.
- ② Estimation of $F: \sim 10$ min.
- Collective Schedule

On the Simulator

- **1** B can be specified (90 parameters)
- **②** Output of the simulator $C \in \mathbb{R}^{6 \times 17}$
- F is a function of C

Computation time on the simulator

- **1** Computation of C: \sim 10min.
- F and O given by C
- Individual Schedule, can run in parallel

Simulations performed with Astra¹

¹Pöplau, Van Rienen, and Floettmann, "3D space charge calculations for bunches in the tracking code Astra".

Methods

The exploration-optimization accelerator tuning

- Learn $\widehat{F} \simeq F_{\text{simulator}}$
- 2 Learn $\widetilde{F} \simeq F_{Linac}(A, B_{Linac})$

Table of Contents

Context and Defintion

Surrogate Models

Conclusion

Multi Layer Perceptron: A First Model

Figure: MLP as a surrogate model of a Linac

Multi Layer Perceptron

- Stack all inputs and outputs
- ullet 10k simulations sampling ${\cal A}$ and ${\cal B}$
- Minimization of the L2 loss

LinacNet: from a Physical Architecture to a Neural Network Architecture

Figure: LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

LinacNet

- Split input and output according to their position in the Linac
- Neural Network Architecture reflecting a Linac architecture
- Each Module models one Diagnostic

LinacNet: from a Physical Architecture to a Neural Network Architecture

Figure: LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

LinacNet

- Split input and output according to their position in the Linac
- Neural Network Architecture reflecting a Linac architecture
- Each Module models one Diagnostic

ThomNet: Incorporating the structure of a beam

Figure: One module of ThomNet

ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Results: Comparable with accuracy of the diagnostic station

The best model achieves results comparable with the diagnostic station accuracy.

Architecture	BPM	ICT	YAG	ICT	BPM	YAG
FeedForward	776	4004	4500	4405	4054	4554
	$776 \mu \mathrm{m}$	$1084 \mu \mathrm{m}$	$1692 \mu \mathrm{m}$	$1106 \mu \mathrm{m}$	$1261 \mu \mathrm{m}$	$1554 \mu \mathrm{m}$
LinacNet Do Do Do Do	$198 \mu\mathrm{m}$	$254 \mu \mathrm{m}$	$541 \mu\mathrm{m}$	$618 \mu \mathrm{m}$	$719 \mu \mathrm{m}$	$913 \mu\mathrm{m}$
ThomNet	$178 \mu \mathrm{m}$	$134 \mu \mathrm{m}$	$247 \mu \mathrm{m}$	$224 \mu \mathrm{m}$	$258 \mu \mathrm{m}$	$336 \mu \mathrm{m}$

Table: MAE of the position. The accuracy of the BPM is $\sim 100 \mu m$

Architecture	BPM	ICT	YAG	ICT	BPM	YAG
FeedForward	176pC	177pC	167pC	91 _P C	91 _p C	91 _p C
LinacNet De	28pC	28pC	29 _P C	34 _P C	34 _P C	35 _P C
ThomNet	8pC	9pC	9 _p C	8pC	8pC	8pC

Table: MAE of the charge. The accuracy of the ICT is $\sim 10 \mathrm{pC}$

A boost in execution time

Execution Speed

In 10 min:

- 1 simulation on Astra
- 20000 predictions of the model

Table of Contents

Context and Defintions

Surrogate Models

Conclusion

Conclusion

Results

- Reflecting the physical constraints in the neural architecture speed up the training and gives better results
- Precision of the same orders than the diagnostics installed on ThomX

Challenges

- Training of a modular model
- Performance for the optimization task to be tested

Questions?