Mediator-based dark matter searches in Neutrino Telescopes

- J. Brunner (CPPM)
- P. Marquard (DESY)
 - J. Blümlein (DESY)

Dark photon searches 2021

NuCal 1 result still world leading

arXiv:2104.10280

Mediator-based dark matter

concepts

Mediator decay

Many more channels than just "dark photons"

From PBC BSM meeting 01/06/2022 G. Lanfranchi

This project

- Explore potential of neutrino telescopes to detect mediatorbased dark matter
- Explore natural dark mediator production processes such as in cosmic ray showers

Neutrino telescopes in the Mediterranean Sea - ANTARES

- 12 detection lines
- 450m high
- 900 optical modules
- Detector construction started
 2006
- Detector completed in 2008
- Continuous data taking until 2022

Neutrino telescopes in the Mediterranean Sea - ANTARES

- Detector dismantled in 2022
- re-analysis of complete data set ongoing
- \sim 15,000 atm v recorded

Neutrino telescopes in the Mediterranean Sea - ANTARES

900 optical modules = pressure resistant glass spheres plus 10 inch photo multiplier wait for second life

- Large international collaboration
- ARCA: TeV-PeV energies ←→ ORCA: GeV energies

Introduction: Technology

Digital Optical Module (DOM)

- Multi-PMT: 31 x 3" PMTs
- Gbit/s on optical fiber
- Positioning & timing

Detection Unit (DU)

- 18 DOMs
- Low-drag design

Deployment Vehicle

- Rapid deployment
- Multiple Dus per sea campaign
- Autonomous/ROV unfurling
- Reusable

Under construction at two sites

DMLab Meeting

13/12/2022 • 12

- Under construction at two sites
- ORCA: GeV energies: 6 lines & 1 year operations
- First physics results in 2020

Cosmic ray showers

 Cosmics ray showers are a powerful neutrino source

 Potential source of dark mediators with coupling to quarks

Particles from CR showers

- Large range of energies accessible GeV PeV
- Large range of baselines: 20km 12000km

Example for mediator-based dark matter searches

Mediator production in cosmic ray showers

Mediator production

Mediator propagation

15km - 12000km

Mediator decay in nu telescope

DMLab Meeting

13/12/2022 • 16

Example for mediator-based dark matter searches

Propagation length >> active detector decay path

In minimal models lifetime correlates inversely coupling Non-minimal models : production and decay might be

governed by different mechanisms

Mediator production

Mediator propagation

15km - 12000km

Mediator decay in nu telescope

DMLab Meeting

13/12/2022 • 17

Potential for neutrino telescopes

Recently explored for IceCube and Superk

Searches for Atmospheric Long-Lived Particles

C. Argüelles,^a P. Coloma,^b P. Hernández,^b V. Muñoz,^b

arXiv:1910.12839

- Example: expected additional events in SuperK
- HNL hypothesis

DMLab Meeting

Potential for neutrino telescopes

Recently explored for IceCube and Superk

Searches for Atmospheric Long-Lived Particles

C. Argüelles,^a P. Coloma,^b P. Hernández,^b V. Muñoz,^b

arXiv:1910.12839

Figure 16. Limits on dark photons decays from IceCube (thick lines) and Super-Kamiokande (thin lines) on the ϵ^2 vs $c\tau_V$ plane including production from π_0 , η decay and bremsstrahlung for $m_V = 0.01 \text{GeV}$ (solid), 0.1GeV (dashed) and 0.5 GeV (dotted).

Example for mediator-based dark matter searches

Mediator production and decay inside detector

Mediator production in nu telescope

Mediator propagation

100m - 500m

Mediator decay in nu telescope

Potential for neutrino telescopes

Recently explored for IceCube - feasibility

Double Bangs from New Physics in IceCube

Pilar Coloma, 1, * Pedro A. N. Machado, 1, † Ivan Martinez-Soler, 2, ‡ and Ian M. Shoemaker 3, §

arXiv:1707.08573

- Signal: double-bang events in low energy!
- HNL hypothesis

FIG. 1: Schematic illustration of a DB event in IceCube. An incoming active neutrino ν up-scatters into a heavy neutrino N, which then propagates and decays into SM particles. The small circles represent the DOMs while the large circles indicate the positions where energy was deposited.

Potential for neutrino telescopes

Recently explored for IceCube - feasibility

Double Bangs from New Physics in IceCube

Pilar Coloma,^{1,*} Pedro A. N. Machado,^{1,†} Ivan Martinez-Soler,^{2,‡} and Ian M. Shoemaker^{3,§}

arXiv:1707.08573

Competitive limits in coupling – mass space

HNL hypothesis

Why DMLab

- Complementary competences in France / Germany
- France (CPPM)
 - Atmospheric neutrino flux
 - Modelling of exotic signals and background
 - Detector response (efficiency, resolutions)
 - Optimisation of signal/background for each analysis
- Germany (DESY)
 - Mediator production mechanisms
 - Bremsstrahlung, meson-mixing
 - Mediator decays (leptonic, hadronic)
 - Mediator radiative processes

Complications

- Man power needed to proceed
- PhD and/or Postdoc to be hired
- DMLab cannot provide man power but support programs (?)
- Financing ideally via ANR/DFG projects
- Caveat : DESY not eligible
- Suggestion from DMLab welcome
- PhD thesis in co-direction ??

Conclusion

- Mediator based dark matter searches is an exciting and relatively new field
- Neutrino telescopes are in a good position to contribute
- So far no analyses done for the Mediterranean neutrino telescopes!

backup