Electroweak Axions

Jérémie Quevillon
CERN \& LPSC

Second DMLab Meeting, DESY Hamburg, 13th December 202ぇ

A shift of paradigm

- To solve: the hierarchy problem
concretely: why the gravitational force is so much weaker than the other fundamental interactions?
Main candidate,

Supersymmetry : -enlarges Poincaré algebra (new energy scale)
 -needs many new particles
 -can preserve SM gauge group

- To solve: the strong CP puzzle
concretely: why matter and not anti-matter in our universe?
Main candidate,
'Peccei-Quinn' theory : -enforces CP-symmetry
-needs a new global 'no symmetry'
(anomalous+spontaneously broken)
(new energy scale)
-entangled with SM gauge group :
(careful!)
$\left[S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}\right]_{\text {local }} \times\left[U(1)_{\mathcal{B}, C, P Q}\right]_{\text {global }}$ the QCD axion: «new " Goldstone bosons combination $\perp Z_{L}$

The Strong CP Puzzle in particle physics

$$
\mathcal{L}_{Q C D}=\underbrace{\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q} e_{\mathrm{CPV}}^{i \theta_{E W}}\right) q-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}-\theta_{Q C D} \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu P V}^{a}}_{\longrightarrow \text {-component Dirac field }}
$$

$U(1)_{A}$ chiral transformation: $\quad q \rightarrow e^{i \gamma^{5} \theta_{E W}} q \begin{gathered}\text { anomalous } \\ \text { symmetry }\end{gathered}$
the measure of the path integral is not invariant under this transformation axial anomaly shifts quark mass phase to QCD vacuum

$$
\mathcal{L}_{Q C D}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q}\right) q-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}-(\overbrace{Q C D}^{-\theta_{E W} \neq 0}) \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu \nu}^{a}
$$

Yukawa coupling to the Higgs are complex $\quad \theta_{C K M} \neq 0$

Why is this strong CP-violation term so puzzling? $\mathcal{L}_{\varnothing P}=\bar{\theta} \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu \nu}^{a}$
this induces a huge electric dipole moment for the neutron:
Theory: $\begin{aligned} &\left|d_{n}\right| \sim|\bar{\theta}| 10^{-16} \text { e.cm } \quad \text { vs Experiment: }\left|d_{n}\right| \lesssim 10^{-26} \text { e.cm } \\ & \longrightarrow \bar{\theta}<10^{-10} \quad \begin{array}{c}\text { The strong CP problem } \\ \text { =Why is } \bar{\theta} \text { so small? }\end{array}\end{aligned}$
The strong CP problem is really why the combination of QCD and EW parameters make up should be so small...

The Peccei-Quinn Axion Solution

axial anomaly: $\theta_{E W}^{\mathrm{CPV}} \longleftrightarrow \theta_{Q C D}^{\mathrm{CPV}}$
Solution to the strong CP problem of QCD: add fields such that rotate $\bar{\theta}$ to the phase of a complex SM-singlet scalar who gets a VEV and dynamicaly drives $\theta \rightarrow 0$

$$
\mathcal{L}_{Q C D}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q} e^{i \theta_{E W}}\right) q-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}-\theta_{Q C D} \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu \nu}^{a}
$$

1. Introduce a new global axial $U(1)_{P Q}$ symmetry S.B. at high scale \longrightarrow the low-energy theory has a Goldstone boson (the axion field)
2. Design $\mathcal{L}_{\text {axion }}$ such that $Q\left(q_{L}\right) \neq Q\left(q_{R}\right) \longrightarrow$ this makes the $U(1)_{P Q}$ anomalous : net effect: $\quad \mathcal{L}_{\text {axion }}=\mathcal{L}_{Q C D}+\frac{a}{v} G_{\mu \nu} \tilde{G}^{\mu \nu}+\ldots \quad \partial_{\mu} J^{\mu} \sim G_{\mu \nu}^{a} \tilde{G}_{a}^{\mu \nu}$
3. Non-perturbative QCD effects induce:

$$
\begin{aligned}
\mathcal{L}_{\text {axion }}=\mathcal{L}_{C h P T}\left(\partial_{\mu} a, \pi, \eta, \eta^{\prime}, \ldots\right)+V_{e f f} & \left(\bar{\theta}+\frac{a}{v}, \pi, \eta, \ldots\right) \\
& \sim-\Lambda_{Q C D}^{4} \cos \left(\bar{\theta}+\frac{a}{v}\right)
\end{aligned}
$$

minimum of the potential: $\bar{\theta}+\frac{<a>}{v}=0 \quad$ CP-violating term cancels!

Two standard axion models

PQWW axion :

axion identified with a phase in a $2 \mathrm{HDM}\left(f_{a} \sim v_{\text {ew }}\right)$: ruled out

 phenomenology calls for $f_{a} \gg v_{e w}$ ("invisible axion ")method: mix it with a complex SMI singlet with «big » VEV

KSVZ axion :

New «heavy » electrically neutral quark, charged under $U(1)_{P Q}$

+ a new complex scalar singlet

$$
\mathscr{L}_{K S V Z}=\mathscr{L}_{S M}+\bar{\Psi}_{L, R} \not \Psi_{L, R}+y \bar{\Psi}_{L} \Psi_{R} \phi+V(\phi)
$$

DFSZ axion :

2HDM, SM quarks and leptons are charged under $U(1)_{P Q}$

+ a new complex scalar singlet

Axion Like Particles

- QCD axion has couplings correlated to its mass, $m_{a} \sim \Lambda_{Q C D}^{2} \frac{1}{N_{a}}$

Current bounds push the mass well below the eV
-ALP: add an explicit mass term to get a new light pseudo scalar state

$$
\mathscr{L}_{A L P}=\frac{1}{2}\left(\partial_{\mu} a \partial^{\mu} a-m_{a}^{2} a a\right)+\text { couplings to SMI particles }
$$

No longer solve the strong CP problem
May be a DM candidate
Few might arise from string theory
Mass window spans over sub-eV to few GeV

If the mass is greater than a few GeV: LHC could say something!
How to tackle ALP-SM couplings?

Axion couplings

Energy

\uparrow At energies below f_{a} (SB):
$\mathcal{L}_{\text {axion }} \supset \frac{\partial_{\mu} a}{2 f_{a}} j_{a}^{\mu}+\# \frac{a}{f_{a}} G \tilde{G}+\# \frac{a}{f_{a}} F \tilde{F}+\# \frac{a}{f_{a}} Z \tilde{F}+\# \frac{a}{f_{a}} Z \tilde{Z}+\# \frac{a}{f_{a}}$

LHC regime

free from (complex) low energy QCD effects probe different couplings than low energy experiments

> electroweak couplings recently computed do not follow the expected pattern
-J.Q. and C. Smith, arXiv:1903.12559, 2006.06778, 2010.13683;
-J.Q., C. Smith and P.N.H. Vuong , arXiv:2112.00553
-See also Q. Bonnefoy, L. Di Luzio, C. Grojean, A. Paul and A. Rossia, arXiv:2011.10025

At energies below $\Lambda_{Q C D}: a-\eta^{\prime}-\pi^{0}-\eta-\ldots$ mixing
axion mass: $m_{a}=m_{\pi} \frac{f_{\pi}}{f_{a}} \frac{\sqrt{m_{u} m_{d}}}{m_{u}+m_{d}} \sim \frac{\Lambda_{Q C D}^{2}}{f_{a}}$
axion couplings to electrons, nucleons, mesons, photons, ...
(FDIc)
$g_{a \gamma \gamma}=\frac{\alpha}{2 \pi f_{a}}\left(\frac{E}{N}-1.92\right)$

ALP searches from the axion-photon scope

Axion couplings to massive gauge bosons

Axion electroweak couplings

- $a \rightarrow \gamma \gamma$:

- $a \rightarrow l l:$

- $h \rightarrow a a$:

- $e^{+} e^{-} \rightarrow a \gamma$:

Why axions « have » derivative couplings?

An axionic toy model: simple QED extension

- local $U(1)_{e m}$, new scalar field ϕ :
$\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}_{L}(i \not D) \psi_{L}+\bar{\psi}_{R}(i \not \supset) \psi_{R}+\left(y \phi \bar{\psi}_{L} \psi_{R}+h . c.\right)+\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-V(\phi)$
\longrightarrow Goldstone boson (axion) remnant of $U(1)_{P Q}$ S.S.B.

Linear representation

$$
\begin{gathered}
\phi(x)=v+\sigma(x)+i \sigma(x) \\
\mathcal{L}_{\text {Linear }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\frac{m}{v} a \bar{\psi} i \gamma_{5} \psi
\end{gathered}
$$

\rightarrow The axion is a usual pseudo-scalar with no derivative couplings to fermions

Polar representation $\phi(x)=\rho e^{-i(x) / v}$

To remove « a » from the Yukawa terms $\left(y \phi \bar{\psi}_{L} \psi_{R}+h . c\right.$.)
One reparametrizes fermion fields:

$$
\psi_{L}(x) \rightarrow \exp \left(i \alpha a^{0}(x) / v\right) \psi_{L}(x), \psi_{R}(x) \rightarrow \exp \left(i(\alpha+1) a^{0}(x) / v\right) \psi_{R}(x)
$$

\rightarrow Fermion kinetic term induce derivative interactions

$$
\bar{\psi}_{L}(i \not D) \psi_{L}+\bar{\psi}_{R}(i \not D) \psi_{R}
$$

$$
\delta \mathcal{L}_{\text {Der }}=-\frac{\partial_{\mu} a^{0}}{v}\left(\alpha \bar{\psi}_{L} \gamma^{\mu} \psi_{L}+(\alpha+1) \bar{\psi}_{R} \gamma^{\mu} \psi_{R}\right)=-\frac{\partial_{\mu} a^{0}}{2 v}\left((2 \alpha+1) \bar{\psi} \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu} \gamma_{5} \psi\right)
$$

$$
\longrightarrow \mathcal{L}_{\text {Polar }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\delta \mathcal{L}_{\text {Der }}+?
$$

Polar representation
 $$
\phi(x)=\frac{1}{\sqrt{2}}\left(v+\sigma^{0}(x)\right) e^{-i a^{0}(x) / v}
$$

- Fermionic path integral measure is not invariant under the fermion reparametrisation: [Fujikawa]
new local interaction (anomaly - Jacobian of the transformation)

$$
\begin{aligned}
& \delta \mathcal{L}_{\mathrm{Jac}}=\frac{e^{2}}{16 \pi^{2} v} a^{0}(\alpha-(\alpha+1)) F_{\mu \nu} \tilde{F}^{\mu \nu}=-\frac{e^{2}}{16 \pi^{2} v} a^{0} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
& \left.\longrightarrow \mathcal{L}_{\text {Polar }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\delta \mathcal{L}_{\mathrm{L} R}\right) \\
& \longrightarrow \delta \mathcal{L}_{\mathrm{Jac}}
\end{aligned}
$$

DFSZ axion couplings to SM gauge fields

Axion with derivative couplings to fermions

Effective couplings to SM gauge bosons at one loop:

«Polar = Linear»

Polar
representation:

$$
\begin{aligned}
\text { Axial current } A & =\bar{\psi} \gamma^{\mu} \gamma_{5} \psi \\
\text { Vector current } V & =\bar{\psi} \gamma^{\mu} \psi
\end{aligned}
$$

Linear

representation:

$$
\text { Pseudo-scalar current } P=\bar{\psi} \gamma_{5} \psi
$$

Vector current is not conserved
One has to consider both couplings:
$\left(\partial_{\mu} a\right) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ and $\left(\partial_{\mu} a\right) \bar{\psi} \gamma^{\mu} \psi$
not a reliable book-keeping of
the effect of heavy fermions

- idem for ZZ and WW

Several interesting phenomenological aspects

Baryon \& Lepton number, Seesaw, GUTs

Axion and Baryon \& Lepton number

2HDM of type II: $\quad \mathcal{L}_{\text {Yukawa }}=-\bar{u}_{R} \mathbf{Y}_{u} q_{L} \Phi_{1}-\bar{d}_{R} \mathbf{Y}_{d} q_{L} \Phi_{2}^{\dagger}-\bar{e}_{R} \mathbf{Y}_{e} \ell_{L} \Phi_{2}^{\dagger}+$ h.c.

2 neutral Goldstone bosons: a, Z_{L}

$$
\begin{aligned}
& P Q\left(\Phi_{1}, \Phi_{2}, \phi\right)= \\
& \\
& \Longrightarrow P Q\left(x,-\frac{1}{x}, \frac{1}{2}\left(x+\frac{1}{x}\right)\right) \stackrel{a \perp Z_{L}}{\longrightarrow} P Q\left(q_{L}, u_{R}, d_{R}, \ell_{L}, e_{R}\right)=\left(\alpha, \alpha+x, \alpha+\frac{1}{x}, \beta, \beta+\frac{1}{x}\right)
\end{aligned}
$$

2 parameters ambiguity

At this stage no way to fix $\alpha \& \beta$
Ambiguity due to the invariance of the Yukawa couplings under $\mathscr{B} \& \mathscr{L}$
\Rightarrow to be used to accommodate \mathscr{B}, \mathscr{L} violation

Axion and the seesaw mechanism

Majorana mass term: $\mathcal{L}_{\nu_{R}}=-\frac{1}{2} \bar{\nu}_{R}^{C} \mathbf{M}_{R} \nu_{R}+\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{i}+h . c .$.

$$
\Rightarrow\left\{\begin{array}{l}
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{1}: P Q\left(\nu_{R}\right)=\beta+x=0 \\
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{2}: P Q\left(\nu_{R}\right)=\beta-\frac{1}{x}=0 \\
\text { still: } P Q\left(q_{L}, u_{R}, d_{R}, \ell_{L}, e_{R}\right)=\left(\alpha, \alpha+x, \alpha+\frac{1}{x}, \beta, \beta+\frac{1}{x}\right)
\end{array}\right.
$$

- No ambiguity on β since $U(1)_{\mathscr{L}}$ has never been a symmetry: β is fixed
- Introduce operator and then set β, not the contrary!

$$
\begin{aligned}
\nu \text { DFSZ: } & \mathcal{L}_{\nu_{R}}=-\frac{1}{2} \bar{\nu}_{R}^{C} \mathbf{Y}_{R} \nu_{R} \phi+\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{i}+\text { h.c. } \\
\Rightarrow & P Q\left(\nu_{R}\right)=-P Q(\phi) / 2 \neq 0 \\
& \Rightarrow\left\{\begin{array}{l}
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{1} \Rightarrow \beta=-\frac{1}{4}\left(5 x+\frac{1}{x}\right) \quad \text { still: } \ldots . \\
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{2} \Rightarrow \beta=-\frac{1}{4}\left(x-\frac{3}{x}\right)
\end{array}\right.
\end{aligned}
$$

- $U(1)_{\mathscr{L}} \subset U(1)_{1} \times U(1)_{2}$ does not correspond to the usual Lepton number
- $U(1)_{\mathscr{L}}$: never occurs at low energy
- axion = majoron and still solve the strong CP-problem

Axion and GUT

- Let's embed the axion into $S U(5) \quad\left\{\begin{array}{l}\mathscr{B}-\mathscr{L} \text { conserving } \\ \mathscr{B}+\mathscr{L} \text { violating }\end{array}\right.$
\longrightarrow one of the ambiguity immediately disappears:

$$
3 \alpha+\beta=-\left(x+\frac{1}{x}\right) \equiv \frac{2 \mathcal{N}_{S U(5)}}{\frac{\text { anomaly coefficients }}{}}
$$

Rqq constraint not compatible with instanton requirement: $3 \alpha+\beta=0$

- In axion models, PQ charges of the 2 Higgs doublets and the fermions are the same up to the value of α and β
\rightarrow this comes from the orthogonality condition among Goldstone bosons (Yukawa couplings)
\Rightarrow the low energy phenomenology of the axion is the same in all these models since axions couplings are independent of α and β !

Axion-Like Particle Effective Field Theories

BSM Higgs strategy

BSM Axion strategy

Useful for model independent searches
Several independent Wilson coefficients :
Is this always reasonable from a UV point of view?

Implication for ALPs searches

How to construct a truly axion-like basis?
F. Arias-Araǵón, J.Q., C. Smith, arXiv:2211.04489

$$
\mathcal{L}_{A L P}^{\mathrm{eff}}=\frac{1}{2}\left(\partial_{\mu} a^{0} \partial^{\mu} a^{0}-m_{a}^{2} a^{0} a^{0}\right)+\mathcal{L}_{\mathrm{KSVZ}}{ }^{\text {-like }}+\mathcal{L}_{\mathrm{DFSZ}-\text { like }}
$$

KSVZ like: New, heavy, electrically neutral quark, charged under $U(1)_{\mathrm{PQ}}$

$$
\mathcal{L}_{\mathrm{KSVZ}}^{\mathrm{eff}} \mathrm{like}=\frac{a^{0}}{16 \pi^{2} f_{a}}\left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right)
$$

- Typically assuming some heavy vector-like fermions
- Manifestly symmetric under $S U(3)_{C} \otimes S U(2)_{L} \otimes U(1)_{L}$

$$
\begin{aligned}
g_{a g g} & =\alpha_{s} \mathcal{N}_{C}, \\
g_{a \gamma \gamma} & =\alpha\left(\mathcal{N}_{L}+\mathcal{N}_{Y}\right), \\
g_{a \gamma Z} & =2 \alpha\left(-\mathcal{N}_{L} / t_{W}+t_{W} \mathcal{N}_{Y}\right) \\
g_{a Z Z} & =\alpha\left(\mathcal{N}_{L} / t_{W}^{2}+t_{W}^{2} \mathcal{N}_{Y}\right), \\
g_{a W W} & =\frac{2 \alpha}{s_{W}^{2}} \mathcal{N}_{L} .
\end{aligned}
$$

- No direct coupling to SM fermions, but one loop induced:

$$
\mathscr{L}_{f e r m i o n}^{e f f}=\sum_{f=u, d, e} \frac{m_{f}}{v_{a}} c_{a f} a \bar{f} \gamma_{5} f
$$

$$
\begin{aligned}
& c_{a f}=16\left(\alpha^{2} Q_{f}^{2}\left(\mathcal{N}_{L}+\mathcal{N}_{Y}\right)+\alpha_{s}^{2} \frac{4}{3} \mathcal{N}_{C}\right) I_{0}-\frac{\alpha^{2}\left(\mathcal{N}_{L} / t_{W}^{2}+t_{W}^{2} \mathcal{N}_{Y}\right)}{s_{W}^{2} c_{W}^{2}} I_{Z Z} \\
& \\
& \quad+\frac{16 \alpha^{2} Q_{f}\left(T_{f}^{3}-2 Q_{f} s_{W}^{2}\right)\left(-\mathcal{N}_{L} / t_{W}+t_{W} \mathcal{N}_{Y}\right)}{s_{W} c_{W}} I_{\gamma Z}-\frac{4 \alpha^{2} \mathcal{N}_{L}}{s_{W}^{4}} \sum_{f^{\prime}} V_{f f^{\prime}} I_{W W}
\end{aligned}
$$

KSZV-like ALPs

- Parameter space easy to bound, with for example, limits on $g_{a \gamma \gamma}$:

F. Arias-Aragón, J.Q., C. Smith, arXiv:2211.04489

Implication for ALPs searches

How to construct a truly axion-like basis?

$$
\mathcal{L}_{A L P}^{\mathrm{eff}}=\frac{1}{2}\left(\partial_{\mu} a^{0} \partial^{\mu} a^{0}-m_{a}^{2} a^{0} a^{0}\right)+\mathcal{L}_{\mathrm{KSVZ}} \text { like }+\mathcal{L}_{\mathrm{DFSZ}-l i k e}
$$

DFSZ like: 2HDIM plus extra scalar, SM quarks and leptons are charged under $U(1)_{\mathrm{PQ}}$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{DFSZ}}^{\mathrm{eff}} \mathrm{like}= & -\frac{1}{2 f_{a}} \partial_{\mu} a \sum_{f=\text { chiral fermions }} \chi_{V}^{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f}+\chi_{A}^{f} \bar{\psi}_{f} \gamma^{\mu} \gamma^{5} \psi_{f} \\
& +\frac{a}{16 \pi^{2} f_{a}}\left(g_{S}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right)
\end{aligned}
$$

- Vector currents do contribute to physical observables
- Spurious \mathscr{B} and \mathscr{L} violation included
- Axion-like \Rightarrow need to impose anomaly cancellation!

Implication for ALPs searches

How to construct a truly axion-like basis?
$\mathcal{L}_{A L P}^{\mathrm{eff}}=\frac{1}{2}\left(\partial_{\mu} a^{0} \partial^{\mu} a^{0}-m_{a}^{2} a^{0} a^{0}\right)+\mathcal{L}_{\mathrm{KSVZ}}$-like $+\mathcal{L}_{\mathrm{DFSZ}-\text { like }}$
DFSZ like: $2 H D M$ plus extra scalar, SM quarks and leptons are charged under $U(1)_{\mathrm{PQ}}$
$\mathcal{L}_{\mathrm{DFSZ}-\mathrm{like}}^{\mathrm{eff}}=-\frac{i}{f_{a}} a^{0} \sum_{f=u, d, e} m_{f} \chi_{A}^{f}\left(\bar{\psi}_{f} \gamma_{5} \psi_{f}\right)$
Anomaly cancellation taken into account!
Simple pseudo-scalar couplings

- One should not build EFTs with both anomalous couplings and vectorial-axial fermion couplings : because of anomaly cancellations!
- Effective interactions are not always equal to anomalous interactions!
- One loop induced couplings to gauge fields :

$$
\mathscr{L}_{\text {gauge }}^{\text {eff }}=\frac{a}{4 \pi v_{a}}\left(g_{a g g} G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}+g_{a \gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu}+g_{a Z \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}+g_{a Z Z} Z_{\mu \nu} \tilde{Z}^{\mu \nu}+g_{a W W} W^{+\mu \nu} \tilde{W}_{\mu \nu}^{-}\right)
$$

$$
\left.g_{a V_{1} V_{2}}=-2 i \pi \sigma \sum_{f=u, d, e} m_{f} \chi_{f}\left(g_{V_{1}}^{f} g_{V_{2}}^{f^{\prime}} \mathcal{T}_{P V V}\left(m_{f}\right)+g_{A_{1}}^{f} g_{A_{2}}^{f^{\prime}} \mathcal{T}_{P A A}\left(m_{f}\right)\right) \quad \begin{array}{l}
\mathcal{T}_{P V V}(m)=\frac{-i}{2 \pi^{2}} m C_{0}\left(m^{2}\right), \\
\mathcal{T}_{P A A}(m)=\frac{-i}{2 \pi^{2}} m\left(C_{0}\left(m^{2}\right)+2 C_{1}\left(m^{2}\right)\right)
\end{array}\right)
$$

DFSZ-like ALPs - a more constrained case

- Mimicking the 2HDM type-II pseudoscalar couplings:

$$
\chi_{u}=\frac{x^{2}}{1+x^{2}}, \chi_{d}=\chi_{e}=\frac{1}{1+x^{2}} \quad \text { with } \quad x=\tan \beta=v_{u} / v_{d}
$$

- Allows to recast pseudoscalar searches for 2HDM on the DFSZ-like ALP parameter space

For $v_{a} \gtrsim 100 \mathrm{GeV}$ the parameter space is completely unconstrained by the ALP-photon coupling

Conclusion

- Axion-electroweak couplings are mostly unexplored yet
- Axion-electroweak couplings do not always follow the expected pattern \rightarrow must be kept in mind for ALP searches
- Axion with fermion pseudoscalar couplings is safer (no ambiguity)
- DFSZ-like and KSZV-like benchmarks presented
- Different set of parameters identified, reduced with respect to generic ALP EFT with totally different correlations
- Generic ALP EFT does not «incorporate » DFSZ and KSVZ-like benchmarks
- Scenarios easy to constrain, in particular DFSZ-like through 2HDM searches
- Full dedicated analysis with all bounds required for LHC and beyond!

Spare slides

DFSZ-like ALPs

- 4 physical parameters $\left(\chi_{f} / v_{a}, m_{a}\right)$ as opposed to 7 in the generic ALP EFT
- $g_{a X X}$ is now a function of the ALP mass :
F. Arias-Aragón, J.Q., C. Smith, arXiv:2ん11.04489

- Non-linear correlations among EW $g_{a X X}$ in the Higgs broken phase
- Ex: measuring $g_{a g g}, g_{a \gamma \gamma}, g_{a Z \gamma}$ fixes $g_{a W W}$ \& $g_{a Z Z}$ in the KSVZ-like scenario (generic EFT)
- In DFSZ-like scenario one degree of freedom remains: curve in the $g_{a W W}$ \& $g_{a Z Z}$ space

Landscape

Axions should be very light and feebly interacting

Axion DM constraints from laboratory experiments, from stars and cosmos observations

DFSZ axion summary

$$
\begin{aligned}
\mathcal{L}^{\mathrm{eff}}= & \frac{a^{0}}{16 \pi^{2} v}\left(g_{s}^{2} \mathcal{N}^{g g} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+e^{2} \mathcal{N}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu}+\frac{2 e^{2}}{c_{W} s_{W}}\left(\mathcal{N}_{1}^{\gamma Z}-s_{W}^{2} \mathcal{N}_{2}^{\gamma Z}\right) Z_{\mu \nu} \tilde{F}^{\mu \nu}\right. \\
& \left.+\frac{e^{2}}{c_{W}^{2} s_{W}^{2}}\left(\mathcal{N}_{1}^{Z Z}-2 s_{W}^{2} \mathcal{N}_{2}^{Z Z}+s_{W}^{4} \mathcal{N}_{3}^{Z Z}\right) Z_{\mu \nu} \tilde{Z}^{\mu \nu}+2 \mathcal{N}^{W W} g^{2} W_{\mu \nu}^{+} \tilde{W}^{-, \mu \nu}\right)
\end{aligned}
$$

in the limit $m_{\text {u.d.e }} \rightarrow \infty$

J.Q. and C. Smith, arXiv:1903.12559

Effective interactions are not always equal to anomalous interactions!
Remember that \mathcal{N}_{L} is ambiguous

DFSZ axion couplings

2. in the polar representation

$$
\begin{aligned}
& \Phi_{1}=\frac{1}{\sqrt{2}} \exp \left\{i \frac{a}{v} x\right\}\binom{\sqrt{2} H_{1}^{+}}{v_{1}+H_{1}^{0}}, \Phi_{2}=\frac{1}{\sqrt{2}} \exp \left\{-i \frac{a}{v} \frac{1}{x}\right\}\binom{\sqrt{2} H_{2}^{+}}{v_{2}+H_{2}^{0}} \\
& \text { Fermion reparametrization: } \quad \psi \rightarrow \exp \left\{i \frac{P Q(\psi)}{v} a\right\} \psi
\end{aligned}
$$

Consequence 1 : non-invariance of the kinetic terms

- Axion derivative couplings to fermions :

$$
\mathscr{L}_{D e r}=-\frac{1}{2 f_{a}} \partial_{\mu} a \sum_{u, d, e, \nu} \chi_{V}^{f}\left(\bar{\psi}_{f} \gamma^{\mu} \psi_{f}\right)+\chi_{A}^{f}\left(\overline{\psi_{f}} \gamma^{\mu} \gamma^{5} \psi_{f}\right)
$$

Freedom/ambiguity in the PQ charge

	u	d	e	v
χ_{V}	$2 \alpha+x$	$2 \alpha+\frac{1}{x}$	$2 \beta+\frac{1}{x}$	β
χ_{A}	x	$\frac{1}{x}$	$\frac{1}{x}$	$-\beta$

Consequence 2: non-invariance of the fermionic measure

- Anomalous axion couplings to SM gauge fields at tree-level :
(cJacobian of the transformation)

$$
\begin{aligned}
\delta \mathcal{L}_{J a c} & =\frac{a}{16 \pi^{2} v} g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu} & \mathcal{N}_{C}=\frac{1}{2}\left(x+\frac{1}{x}\right) \\
& +\frac{a}{16 \pi^{2} v} g^{2} \mathcal{N}_{L} W_{\mu \nu}^{i} \tilde{W}^{i, \mu \nu} & \mathcal{N}_{L}=-\frac{1}{2}(3 \alpha+\beta) \\
& +\frac{a}{16 \pi^{2} v} g^{\prime 2} \mathcal{N}_{Y} B_{\mu v} \tilde{B}^{\mu \nu} & \mathcal{N}_{Y}=\frac{1}{2}(3 \alpha+\beta)+\frac{4}{3} x+\frac{1}{3 x}+\frac{1}{x}
\end{aligned}
$$

DFSZ axion couplings to SM gauge fields

 2. Axion has derivative couplings to fermionsEffective couplings at one loop:
$a \rightarrow Z Z, W^{+} W^{-}:$

contribute

partially contribute

contribute

does not contribute

> Freedom/ambiguity in the PQ charge cancel exactly

2.

The anomalous contact int. does cancel out systematically with the anomalous part to the triangle graphs

$$
\mathcal{L}_{\text {axion-gauge }}=\delta \mathcal{L}_{\text {Der }}+\delta \mathcal{L}_{\text {Jite+diverofler }}
$$

KSZV-like ALPs

- The fermion one-loop coupling arises from an infinite diagram
- Regularizing this diagram may introduce scheme-dependence due to γ_{5}
- Dependence removed by projecting fermion pair on the $J^{C P}=0^{-+}$state
- This yields a result with more physical meaning than the other schemes
- Renormalization scale $\mu=v_{a}$ identified from two-loop finite process

Switch to generic ALP EFT

$$
\mathscr{L}_{S M-A L P-E F T}=\mathscr{L}_{S M}+\mathscr{L}_{a}+\mathscr{L}_{a-S M}
$$

Ex:

$$
\begin{aligned}
\mathscr{L}_{a-S M}^{D=5} \supset & \sum_{f} C_{f f} \frac{\partial^{\mu} a}{\Lambda} \bar{f} \gamma_{\mu} \gamma_{5} f+C_{G G} \frac{a}{\Lambda} G_{\mu \nu} \tilde{G}^{\mu \nu} \\
& \text { only 2 d.o.f: }+C_{\gamma \gamma} \frac{a}{\Lambda} F_{\mu \nu} \tilde{F}^{\mu \nu}+C_{\gamma Z} \frac{a}{\Lambda} F_{\mu \nu} \tilde{Z}^{\mu \nu}+C_{Z Z} \frac{a}{\Lambda} Z_{\mu \nu} \tilde{Z}^{\mu \nu}+C_{W W} \frac{a}{\Lambda} W_{\mu \nu} \tilde{W}^{\mu \nu} \\
\mathscr{L}_{a-S M}^{D \geq 6} & \supset \frac{C_{a h}}{\Lambda^{2}}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right) H^{\dagger} H+\frac{C_{Z h}}{\Lambda^{2}}\left(\partial^{\mu} a\right)\left(H^{\dagger} i D_{\mu} H+\text { h.c. }\right) H^{\dagger} H+\ldots
\end{aligned}
$$

More degrees of freedom

Major difference for analysis: fermionic \& gauge sectors are truly secluded here

Current constraints on :

