Plasma acceleration

and modern computing practices at DESY

Maxence Thévenet – DESY

Second DMLab meeting, DESY, Hamburg, 12/12/2022

Particle accelerators are large devices

- Enable research in biology, medicine, chemistry, HEP, etc.
- Kinetic energy: $\mathcal{E}_k \propto L \times E_z$
- Conventional accelerators limited to $E_z < 100 \text{ MV/m}$

Plasma acceleration $E_z > 10 \text{ GV/m} \rightarrow 100 \text{x}$ more compact

Applications from MeV to TeV energy ranges

- X-ray sources, high-energy physics
- Democratize accelerator-based sources

Plasma acceleration: an alternative to conventional technologies

Wake ~ $\lambda_p \sim 100 \; \mu m$ Propagation ~ mm-m distance

T. Tajima, J. M. Dawson. PRL 43.4 (1979)

The wake can be driven by a particle beam or a laser pulse

Electron beam

- $<\lambda_p$ L ٠
- $\boldsymbol{v} \sim c \boldsymbol{e}_{\boldsymbol{z}} \\ \rho, \boldsymbol{J} \rightarrow \boldsymbol{E}, \boldsymbol{B}$

Laser pulse

- Ultrashort (fs): $L < \lambda_p$ ٠
- Ultraintense: $a_0 = \frac{\dot{e}E_0}{m_e\omega c} \sim 1$ ٠
- Ponderomotive force: $\mathbf{F}_{p} = -\frac{1}{2m_{e}\overline{\mathbf{v}}} \mathbf{\nabla} \overline{|qA_{x}^{2}|}$ ٠

Beam-driven wakefield acceleration (FLASHForward, DESY)

FLASH electron beam 1 GeV, 1 nC

Plasma 10¹⁵ - 10¹⁷ cm⁻³, 5-20 cm long

High-quality acceleration

Laser-driven Wakefield Acceleration (LUX, DESY)

Courtesy of Sören Jalas, UHH, DESY

Wrapping up on the physics of plasma acceleration

J. Faure et al. Nature 431.7008 (2004)
 S. Mangles et al. Nature 431.7008 (2004)
 C. G. R. Geddes et al. Nature 431.7008 (2004)
 A. J. Gonsalves et al. PRL 122, 084801 (2019)
 W. Wang et al. Nature 595.7868 (2021)
 A. Maier et al. Phys. Rev. X 10, 031039 (2020)
 R. D'Arcy et al. Nature 603.7899 (2022)

- > Strong accelerating fields $E_z \sim 10s$ GV/m
- Laser-driven or beam-driven
- Accelerated electron beams are inherently ultrashort (fs)
- Demonstrated
 - Mono-energetic electron beams [1-3]
 - o Acceleration up to 8 GeV [4]
 - FEL driven by a laser plasma accelerator [5]
- Remaining challenges
 - o Stability [6]
 - Repetition rate [7]
 - o Staging
- \succ But: non-linear process \rightarrow numerical simulations are crucial

Particle-in-cell is the method of choice for wakefield simulations

Regular grid Macroparticles Lagrangian description of plasma Eulerian description of fields

 \rightarrow 3D simulations of plasma acceleration are very expensive (1000³ cells ~ 1 TB)

Particle-in-cell is the method of choice for wakefield simulations

- Boosted frame method
 J.-L. Vay PRL 98, 130405 (2007)
- Reduced model: quasi-static approximation (QSA)
 Sprangle, P. et al., PRL 64.17 (1990): 2011
 HiPACE++ at DESY

https://www.top500.org/lists/top500/2022/11/

What platform do we run on?

- Top500: 15/20 GPU
- Green500: 19/20 GPU
- \rightarrow on GPU

Rank	Name	Hardware
1	Frontier TDS	AMD Instinct MI250X
2	Frontier	AMD Instinct MI250X
3	LUMI	AMD Instinct MI250X
4	Adastra	AMD Instinct MI250X
5	ATOS THX.A.B	NVIDIA A100
6	MN-3	Xeon Platinum 8260M
7	SSC-21 Scalable Module	NVIDIA A100
8	Tethys	NVIDIA A100
9	Wilkes-3	NVIDIA A100
10	Athena	NVIDIA A100
11	Phoenix - 2022	NVIDIA A100
12	HiPerGator Al	NVIDIA A100
13	Snellius Phase 1 GPU	NVIDIA A100
14	Perlmutter	NVIDIA A100
15	Karolina, GPU partition	NVIDIA A100
16	MeluXina - Accelerator Module	NVIDIA A100
17	Alex	NVIDIA A100
18	NVIDIA DGX SuperPOD	NVIDIA A100
19	JUWELS Booster Module	NVIDIA A100
20	JURECA Data Centric Module	NVIDIA A100

PIC codes benefit from modern code practices

- Performance-portability
 - Portability layer (Kokkos, Alpaka, RAJA) C++
- Open Source & Open Repository
 - Encourages flexible, modular code
- Documented
 - Clear and transparent code

HiPACE++: people and structure

[1] https://github.com/AMReX-Codes/amrex
 [2] https://github.com/ECP-WarpX/WarpX
 [3] Myers et al., Parallel Comput. 2021
 [4] https://github.com/openPMD/openPMD-standard

Maxence Thévenet DESY

Severin Diederichs

Alexander Sinn

33

Axel Huebl LBNL

Andrew Myers LBNL

Weiqun Zhang LBNL

Carlo Benedetti LBNL

Rémi Lehe

I BNI

Jean-Luc Vay LBNL

DESY

Modern HPC practices enable more science and collaboration

Driving principles

- Open-source, well documented
- Automated testing (CI)
- Adopt community standards
- Performance portability
- Rely on existing libraries

Develop and combine multiple simulation tools

- Wake-T: lightweight reduced model for 2D simulations (few min on a laptop) – DESY
- FBPIC: LBNL-DESY collaboration for laser wakefield acceleration simulations

Plasma Injector for Petra IV – PIP4 (A. Martinez de la Ossa) Petra IV: 2.3 km, 6 GeV storage ring for unprecedented X-ray brightness. Specs: 6 GeV, > 1 nC/s, 1% momentum acceptance, 10 mm.mrad How can the injector be replaced by a LPA?

Implement machine learning for more efficent operation

- Parallel Bayesian optimization
- Multi-task BO
- (A. Ferran Pousa)

Conclusion & Perspectives

- Plasma acceleration: worldwide effort towards compact accelerators
- Next challenges: stability, repetition rate, staging
- Numerical simulations crucial in plasma acceleration research
- > We favor open-source & community standards for more collaboration

Thank you for your attention

