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DESIGN PARAMETRES GOVERNING DETECTOR PRECISION

Spatial resolution and (passive !) Material budget

Sensor level:
pixel dimensions (both directions)
sensor thickness: sensitive volume (= signal amplitude), read-out circuitry (= monolithic !)
pixel charge sharing
charge digitisation: power driver = minimise !
time resolution / read-out speed: power driver => compromise !

data flow: power driver (= in-pixel signal discrimination)

System integration (services)
mechanical support
cooling system: driven by sensor power (= read-out architecture)
cables (powering, slow control, signal read-out): governed by sensor power (= read-out architecture)

overlap between neighbouring detector modules



OBJECTIVES & APPROACH

Technological goal: achieve new standards in charged particle vertexing and tracking

Detection performance top priority: granularity & material budget = precision

exploit thinned, highly pixelated, CMOS Pixel Sensors (CPS) and the evolution of CMOS industry (feature
size = pixel size and micro-circuit density, stitching => large sensors)

exploit new materials and forefront of industrial techniques (thermo-mechanics, electronics)

investigate new concepts: "unsupported” & double-sided detection layers, wireless short range signal

transmission, etc.

develop accurate simulation software of CMOS sensor response and reconstruction algorithms

Exploit common requirement priorities addressed by Helmholtz & IN2P3 groups involved in:
heavy-ion and hadron physics experiments (ALICE/LHC, CBM/GSI, etc.)

e+e- collider experiments (future Higgs factory, BELLE-Il upgrade, etc.)

Exploit common interests with semi-conductor detector R&D at large:

pp collider expts (HL-LHGC, ...): common CMOQOS techno., sensor simulation & track reconstruction software

multi-purpose (transversal) R&D programmes addressing subatomic physics and its spin-off applications
(EURIZON, AIDAinnova, ECFA detector R&D, etc.)
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CMOS PIXEL SENSORS

ALPIDE D)

Nl
Technology ALICE
» Process: Tower Semiconductor 180 nm CIS

- deep p-well to allow CMQOS circuitry inside matrix
- reverse-substrate bias

> Detection layer: 25 pm high-resistive (>1 kQQcm)
epitaxial layer
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> Thickness: 100 um (OB) or 50 um (I1B)
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IN-PIXEL CIRCUITRY

ALPIDE @)

Pixel functionality ALICE

v

Front-end:
(9 transistors, full-custom)

- continuously active
- shaping time: < 10 ps
- power consumption: 40 nW

v

Multiple-event memory: 3 stages
(62 transistors, full-custom)

v

Configuration: pulsing & masking registers
(31 transistors, full-custom)

2 x 26.88 um

A 4

Testing: analogue and digital test pulse circuitry
(17 transistors, full-custom)

v

Readout: priority encoder, asynchronous, hit-
driven

=~ - X 29.24 um = 0O(200) transistors / pixel (wrt. 3T/4T)
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SUPPRESSED MATERIAL BUDGET

% ITS3: 6 truly cylindrical wafer-scale MAPS

Detector concept

From 432 to 6 bent sensors

Key ingredients:
- 300 mm wafer-scale MAPS sensors, fabricated using stitching
- thinned down to 20-40 pm, making them flexible

CGarbon Foam

Cylindrical Structural

- bent t0 the target radii Shell
(Lo 23 mm = 18 mm, closer t0 the interaction point
thanks to the new beampipe at 16 mm)

1.

0

s

LL

O

=

<

3

L

I_

iy

S| - mechanically held in place by carbon foam ribs Half Barrels
o

S Beampipe inner/outer radius (mm) 16.0/16.5

% Layer parameters Layer O Layer 1 Layer 2
8 Radial position (mm) 18 24 30

O

O Length (sensitive area) (mm) 300

2 Active area (cm?) 610 816 1016
Q Pixel sensors dimensions (mm?) 280 x 56.5 280x75.5 280 x 84 o
-_E’ Number of sensors per layer 2

§ Pixel size (um?) O(10x10)

17,

0]

=

S Key benefit:

u

- extremely low material budget: 0.02-0.04% X, (beampipe: 500 pm Be, 0.14% X)
- homogeneous material distribution: negligible systematic error from material distribution
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SUPPRESSED MATERIAL BUDGET

| ALICE ITS3 requiremenis

% ALICE ITS3 E S

Radiation hardness |10 kGy + 1072 1M&V nsg/cm?

AR
Beam pipe i

Replacing the 3 innermost layers with new ultra-light, truly cylindrical layers:

« Reduced material budget (from 0.35% to 0.05% X0)

» Closer to the interaction point (from 23 to 18 mm)

* Improved pointing resolution

Cylindrical
Structural Shell

I. Sanna, 7th December 2022, WP1 meeting
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CYLINDRICAL LAYERS: MAIN R&D TOPICS

% ITS3: 6 truly cylindrical wafer-scale MAPS

F.Carnesecchi, 25th October 2022, VERTEX, ALICE 1TS3

Outline R&D roadmap and challenges

Air for cooling
Thermal test ongoing

Support with Carbon foam ribs and handling ultra thin structures
Development of procedures to handle large thin chips and mechanical concept to hold thin sensors
“without” material

Silicon flexibility and bending: ultra-thin, bent Monolithic Active Pixel Sensors
Performance of bent silicon at different target radii: 18 mm, 24 mm, 30 mm

Sensor design: 65 nm CIS process of TPSCo for tracking detectors
Charge collection efficiency, detection efficiency, radiation hardness

Stitching of wafer scale-chips
In chip power and signal distribution
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CYLINDRICAL LAYERS: SENSOR BENDING

50 ym Dummy chip

Radius = 30 mm




3 CYLINDRICAL LAYER INTEGRATION WITH FOAM SPACERS

® Silicon flexibility and bending

i ' Mechanical mockup of 3 truly
- cylindrical dummy layers
Radii: 18 mm, 24 mm, 30 mm

Open-cell carbon
foam spacers

silicon dummies
(40-50 pm)

!

F.Carnesecchi, 25th October 2022, VERTEX, ALICE ITS3

Final aim = turn these dummy silicon chips into a true
single die monolithic pixel sensor

—
N
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INNOVATIVE LAYER CONCEPT: MAPS-FOIL

ALICE 3 tracker O,

NS
example: “MAPS foils” — chips within printed circuit boards ket
> “Novel” concept (revised and updated from 2012)

» Will be studied further as an option
. - ::_E_ZQ plating 13 pm
D e — ‘\92 gladding 5pum

- Mmetal stack

pad: 200 um silicon 45 pm

glue

Polyimide

total: 213 ym

MAPS sensor [

]
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Next steps: stitched sensors, multi-layer module ?

11



Relative frequency (per 20 e™)

65 nm CMOS TECHNOLOGY: CLUSTER CHARACTERISTICS

Standard process
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Relative frequency (per 1mV)
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65 hm CMOS TECHNOLOGY: DETECTION PERFORMANCES
Exploration of 65 nm CMQOS process: small prototypes fabricated in 2021 (MLR1)

Analog (10, 15, 20, 25 um pitch) and Digital (25 pm pitch) output mini-prototypes

Detection efficiency & Spatial resolution vs discrimination threshold

DPTS - beam tests

efficiencies and fake hit rates

@DESY March 2022, 3.4 GeV/ce™~
Plotted on 15 Jun 2022
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Excellent detection efficiency at very low fake hit rates over large threshold range!
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Fake Hit Rate, measured in laboratory (pixel™ s71)
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DPTS - beam tests
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Spatial resolutions and average cluster sizes in accordance with naive expectation = more to come!

Plateau in detection efficiency > 99 % up to >~ 150 e (despite thin EPI)
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65 nm CMOS TECHNOLOGY: STITCHING

o Exploration of 65 nm CMOS process: large prototypes
- Next step: Engineering run (ER1) with long prototypes trying stitching — back in Spring’23
- Ultimate goal: Achieve wafer scale sensor for the ALICE-ITS3 (ER2 in 2024 — ERS for LS3)

¥ Stitching - a wafer scale sensor

B MLR1 chips are ~1.5 x 1.5 mm in size

- ALPIDE is 30 x 15 mm limited by reticle size
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For such large area = stitching needed:
aim at a realization of a true single wafer scale sensor

F.Carnesecchi, 25th October 2022, VERTEX, ALICE ITS3
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TOWARDS LARGE AREA HIGH RESOLUTION TRACKERS

ALICE 3 &) G

- ALICE
Overview TOF |

Superconducting
magnet system

> ALICE proposes to
bU||d a Completely | Letter of intent for
new detector in LHC ) | ALICE3
LS4 (2033-34) - |

» |t will heavily rely on
silicon detectors

[CERN-LHCC-2022-009]

> Central part:
a 60 m2 MAPS
tracker

Muon
absorber

Muon
chambers

- with in-beampipe
vertex layers

Letter of Intent very positively evaluated by LHCC — R&D programme ramping up!

Magnus Mager (CERN) | ALICE ITS3 / ALICE 3 tracker | CBM-MVD retreat | 16.09.2022 | 27

15



GROUPS INVOLVED - PROJECTS CONCERNED
DESY: 65 nm generic R&D, Belle-Il, EURIZON
Charge collection system simulation software (AIIpix2)
65 nm technology design and characterisation

CMQOS sensor tests (e.g. EUDET beam telescope, PLUME module)

GSI: experiments at FAIR (e.g. CBM-MVD/STS), ALICE-ITS3, EURIZON
CMOS sensor characterisation (MIMOSIS)
System integration (MIMOSIS in CBM-MVD)

CMOS sensor bending and related integration issues (ITS3)
IPHC-Strasbourg: 65 nm generic R&D, ALICE-ITSS, Bellell upgrade, Higgs-Factory, EURIZON
CMOQOS sensor design & characterisation for CBM-MVD (MIMOSIS), extension to Higgs-Factory
65 nm generic prototyping (design and testing)
ITS3: chip bending, stitching
|JClab-Orsay: Belle-Il (extension to Higgs-Factory)

System integration (vertex detector ultra-light cooling)
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SUMMARY

DMiIab: hub fostering partnership between groups involved in the development of upcoming & future high

precision and ultra-light vertexing and tracking devices for experiments addressing DM search

Generic concept developed follows ALICE-ITS3 design, complemented with the R&D on CMQOS pixel sensors in
65 nm technology

Rich spectrum of groups’ expertise, activities, projects, interests, ... (my own understanding):
DESY: sensor response simulation & track reconstruction SW; 65 nm sensor design & tests
GSI: curved sensor integration (ITS3 & beyond); sensor tests & integration for expts at FAIR (e.g. CBM)
IPHC: sensor design, simul. & tests (ITS3, Belle-Il, Higgs-Fact, 65 nm), curved sensor integration (ITS3)

|[JClab: integration (cooling) of future vertex detector based on CMOS sensors in case of Belle-Il upgarde

Next steps:
|dentify specific topics of partnership

Define type of partnership and modus operandi

Not addressed yet (resources !):
multi-layer detection modules = multiple impacts per layer traversed

sensor stacking = squeezed pixel dimensions
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