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Gravitational waves from

first-order phase transitions

* first-order phase transitions proceed by
bubble nucleations

* in case of the electroweak phase
transition, the "Higgs bubble wall”
separates the symmetric from the broken
phase

* this is a violent process (v,,q;; =~ O(c¢))
that drives the plasma out-of-equilibrium
and sets the fluid into motion



Singlet extension

The Standard Model only features a
electroweak crossover.

A potential barrier and hence first-order
phase transitions are quite common in
extended scalar sectors:

V(h,s) = % (h? — %)

+m25% + \g5* + Ams2h?

The singlet field has an additional 7, symmetry and is a
viable DM candidate.

The phase transition proceeds via
(h,S) — (va) — (has) — (’U,O)
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Gravitational waves

During the first-order phase transitions, the
nucleated bubbles expand. Finally, the colliding
bubbles break spherical symmetry and generate
stochastic gravitational waves.



Observation

[Grojean&Servant '06]

The produced gravitational waves can be observed
with laser interferometers in space ...
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redshifted Hubble horizon during a phase
transition at T ~ 100 GeV



Observation

[Grojean&Servant '06]

... or on the ground
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Strong phase transition at larger temperatures produce
the same energy fraction of gravitational waves but at
higher frequencies.



GWs from PTs

ArXiv activity:

inspire hep - gravitational waves inspire hep - GWs & PTs
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GWs from PTs
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Back of the envelope

There are several quantities that can enter in the
determination of the GW spectrum:

The temperature of the phase transition T.
The (inverse) duration of the phase transition
P o exp(Bt)  and typically

The wall velocity v ~ 1 .

The amount of latent heat that is transformed into
Kinetic energy K In the plasma:

A
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Observation
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Observation

(b2 y T =100 GeV
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Observation
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Observation

Qg2 T =100 GeV
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Sources of GWs from PTs

During and after the phase transition, several sources of
GWs are active

© Collisions of the scalar field configurations / initial fluid
shells

© Sound waves after the phase transition
(long-lasting — dominant source)

© Turbulence
~ Magnetic fields

In the last 10 years, simulations became the main tool
to incorporate all these effects.
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State-of-the-art: simulations

[Hindmarsh, Huber , Rummukainen, Weir '13, '15, '17]

[Weir '16] [Gould, Sukuvaara,Weir '21] [Cutting, Hindmarsh, Weir '18&’19]
[Cutting, Escartin, Hindmarsh, Weir '20]

Depending on the context, the system can be descibed using
hydrodynamics (fluid + Higgs) or just a scalar field

The produced GW
spectrum can be read
off from the simulation.
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Really robust results,
not many a priori
assumptions.
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Bubble wall thickness

The main challenge in the hydrodynamic simulation is to cover very
different length scales.

In the physical phase transition

wall thickness <<<<<<< fluid shell thickness < bubble size
1/100GeV % of Hubble radius

In simulations:

grid spacing < (wall thickness < fluid shell thickness < bubble size) < DOX Size
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Higgsless simulations

In order to avoid this issue, we want to perform simulations that are
agnostic about the wall thickness. This would resemble an =~ 7
where the Higgs field was integrated out.

However, this requires a New High-Resolution Central Schemes
hydrodynamic numerical for Nonlinear Conservation Laws and
framework that can deal with Convection-Diffusion Equations
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Central schemes may serve as universal finite-difference methods for solving non-
linear convection—diffusion equations in the sense that they are not tied to the specific
eigenstructure of the problem, and hence can be implemented in a straightforward
manner as black-box solvers for general conservation laws and related equations gov-
erning the spontaneous evolution of large gradient phenomena. The first-order Lax—
Friedrichs scheme (P. D. Lax, 1954) is the forerunner for such central schemes. The
central Nessyahu—Tadmor (NT) scheme (H. Nessyahu and E. Tadmor, 1990) offers
higher resolution while retaining the simplicity of the Riemann-solver-free approach.
The numerical viscosity present in these central schemes is of order Q((Ax)? [/ At).
In the convective regime where At ~ Ax, the improved resolution of the NT scheme
and its generalizations is achieved by lowering the amount of numerical viscosity
with increasing r. At the same time, this family of central schemes suffers from
excessive numerical viscosity when a sufficiently small time step is enforced, e.g.,
due to the presence of degenerate diffusion terms.

In this paper we introduce a new family of central schemes which retain the sim-



Simulation of cosmological

dhase transitions

We recently developed a highly efficient scheme to simulate
relativistic hydrodynamics during cosmological first-order
phase transitions.
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These simulations allow to extract GW spectra from the
phase transition in a few hours instead of weeks

(factor 2000 speed improvement compared to former
approaches)



Simulation of cosmological

dhase transitions

The setup allows to run many simulations a day and to
extract the GW spectra as functions of the PT properties:
wall velocity v, PT strength a
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The spectra have (wo features due to the bubble size and the

shell thickness.
[Jinno, TK, Rubira, Stomberg 2022]
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Physics of a thermal first order phase transition

Several processes during the phase transition
may generate GW

- Bubble collisions tumer and wilczek 1990 ~ u

- Sound waves Hindmarsh et al. 2014

- In strong phase transitions, shocks may
convert the acoustic phase into a turbulent (

ONE pen and Turok 2016

Purpose of the paper: - O
- provide templates for the future LISA GW O
detector. y

- More specifically, we model decaying
turbulence semi-analytically and validate /
with massively parallel numerical

simulations \\

Credits: Hindmarsh et al. 2014
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Snapshot of the simulations
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Left panel: Slice through simulation (A’) showing the velocity initial conditions in real space. Right panel: Same
slice as the left panel but after a time A7 = 20.67¢,_ has elapsed.
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GW power spectrum for instantaneous generation

- Gray lines: our analytical approximation based on a constant source lasting a few eddy

turnover times
- Black lines: result of the 4d numerical integration
- Colored lines: From top to bottom w, = 0.3, v« = 0.1 and v, = 0.03 respectively for simulations
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Impact of a growth phase

We include a growth phase for the turbulence kinetic energy
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In principle, one would have to model the onset of turbulence by simulating the complete system
of scalar field and fluid
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Putting it all together

The different sources and the relation to particlue physics model building is discussed
in publications by the LISA cosmology working group on GWSs from cosmological
phase transitions:

web-tool by David Weir

Science with the space-based http://www.ptplot.org
interferometer eLISA. II: Gravitational

waves from cosmological phase TR T
transitions 10t

Caprini et al.
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Detecting ravitational waves from
cosmological phase transitions with
LISA: an update
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DMLab will help to intensify this collaboration!
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