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Outline

A. Overview of SPT-3G 2019/2020 

B. High precision inpainting of the SPT-3G data
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SPT-3G baseline fieldSouth Pole Telescope
Details

• 10-meter diameter telescope located at 
the South Pole in optimal conditions 
for microwave observations, observing 
CMB anisotropies 

• SPT-3G: state-of-the art instrument 
with 3 frequencies 90, 150, 220 GHz 

• Beam: 1.6’/1.2’/1.0’ (Planck: 5’) 

• Final map depth: 2.8, 2.6, 6.6 µK-
arcmin (T) vs Planck 40 -arcmin  

• See Sobrin et al. 2022 for more details

μK
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Credits: A. Chohski

SPT

Credits: F. Guidi

https://arxiv.org/abs/2106.11202


South Pole Telescope
Forecasts

• 10-meter diameter telescope located at 
the South Pole in optimal conditions 
for microwave observations, observing 
CMB anisotropies 

• SPT-3G: state-of-the art instrument 
with 3 frequencies 90, 150, 220 GHz 

• Beam: 1.6’/1.2’/1.0’ (Planck: 5’) 

• Final map depth: 2.8, 2.6, 6.6 µK-
arcmin (T) vs Planck 40 -arcmin  

• See Sobrin et al. 2022 for more details

μK
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Credits: Silvia Galli

Forecasts on CDM parameters with SPT-3G (5 years) dataΛ

https://arxiv.org/abs/2106.11202
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• For SPT-3G 2018, mock-
observations are used to build the 
covariance matrix of the data 
vector of primary anisotropies 
(TTTEEE) => we replace it by a 
precise and fast analytical 
computation of the covariance 
developed in [Camphuis et al. 2022]

Analytical covariance
−ln ℒ(Ĉ |ΛCDM)

∝
1
2

(Ĉ − Cth)TΣ−1(Ĉ − Cth))

Power spectrum gaussian likelihood :



• For SPT-3G 2018, mock-
observations are used to build the 
covariance matrix of the data 
vector of primary anisotropies 
(TTTEEE) => we replace it by a 
precise and fast analytical 
computation of the covariance 
developed in [Camphuis et al. 2022] 

• The mask  is a key ingredient 
of the covariance
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Effect of the mask
: correlation matrixσ

8

200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

Analytical approximation of the covariance works



Effect of the mask
: correlation matrixσ

8

200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

Analytical approximation of the covariance works

0 500 1000 1500 2000 2500 3000
`

10°4

10°3

10°2

10°1

100

101

102

103

D
ia

go
n
al

of
co

va
ri

an
ce

With holes in the mask

Without holes in the mask

Analytical approximation of the 
covariance fails because it does 

not model correctly the 
additional coupling and 

additional variance

We must mask sources



Effect of the mask - source masking
We can not use our analytical approximation of the covariance
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Our solution: inpainting
• Gaussian constrained realization of 

the CMB anisotropies:

 

• Challenges: high precision 
inpainting of high resolution 
maps with many sources 
( ) of varying radii. 

T inp

Qinp

Uinp

= X
Tdata

Qdata

Udata

+ (1 − X)
T random

Qrandom

Urandom

Nsources ∼ 2000
10
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• Gaussian constrained realization of 
the CMB anisotropies 

 

•  

• Why adding a random CMB ? It 
allows to have an unbiased spectrum ! 
But inpainted CMB is not true CMB

T inp

Qinp

Uinp

= X
Tdata

Qdata

Udata

+ (1 − X)
T random

Qrandom

Urandom

⟨Ĉinp
ℓ ⟩ = ⟨ĈXD

ℓ ⟩ + ⟨Ĉ(1−X)R
ℓ ⟩ = ⟨Ĉdata

ℓ ⟩

Our solution: inpainting
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Data Random CMB
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Filtered 
data

Anti-filtered 
random 
realization

Inpainted 
data
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Our test pipeline

• In the following slides, I will show a 
series of tests asserting the validity of 
our method 

• See pipeline to the right 

• Plots will show the bias in units of 
cosmic deviation + noise 

 

• I will show only temperature, but 
polarization (TE, EE) is similar

⟨Ĉinp
ℓ ⟩ − ⟨Ĉbare

ℓ ⟩
σ{Cbare

ℓ }
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1. High precision

• We restrict our inpainting to using 
nearby pixels for efficiency purpose 

• We need to use a certain amount 
(more than 1 deg around the hole!) 
to reach high precision 

• This corresponds to the size of the 
CMB correlation 

• We reach less that 5% of cosmic 
variance + noise error

13



1. High precision
Temperature and polarization
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2. Robustness against 
input spectrum

 

Inpainting requires a fiducial spectrum  

We show that we are robust against 
variations of the input spectrum

T inp

Qinp

Uinp

= X
Tdata

Qdata

Udata

+ (1 − X)
T random

Qrandom

Urandom

15

Cfid
ℓ



2. Robustness against 
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3. Response function
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Inpainting requires a fiducial 
spectrum  

We show that the response 
function is negligible

T inp
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Tdata

Qdata
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T random

Qrandom
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4. Impact on covariance

• We compare the covariance of pure 
CMB simulations with the 
covariance of inpainted simulations 

• We show that our inpainting 
does not create any additional 
variance or coupling 

• Our inpainted CMB behaves like 
a CMB 
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5. Adapting covariance

19

• Back to inpainting

 

•  

• We do not want to use the 
random realization as true data 

T inp

Qinp

Uinp

= X
Tdata

Qdata

Udata

+ (1 − X)
T random

Qrandom

Urandom

⟨Ĉinp
ℓ ⟩ = ⟨ĈXD

ℓ ⟩ + ⟨Ĉ(1−X)R
ℓ ⟩ = ⟨Cdata

ℓ ⟩
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Filtered 
data

Inpainted 
data

Anti-filtered 
random 
realization

ĈXD

Ĉinp

 gives the contribution 

of the filtered data in the output 
spectrum 

We can rescale the covariance  

ρℓ =
⟨ĈXD

ℓ ⟩
⟨Ĉinp

ℓ ⟩

Σinp =
1
ρ

⊗
1
ρ

Σanalytical



6. Efficiency
• Our code is parallelized 

• Allows inpainting of multiple 
maps at the same time => divide 
the effective time by the number of 
maps 

• on 64 CPUs: 30 mins per map (for 
50 maps) for 2000 sources to 
inpaint

20

Optimal CMB reconstruction 
Wiener filtering

• Wiener filtered is obtained 
analytically

 

• Applying the filter takes most of the 
CPU-time (because of inversions!)

T inp

Qinp

Uinp

= X
Tdata

Qdata

Udata

+ (1 − X)
T random

Qrandom

Urandom
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Credits: Aman Chokshi

Conclusions

• SPT-3G will put tight constraints 
on parameters 

• In order to use our analytical 
framework for the covariance 
matrix, we decided to inpaint our 
maps 

• Upcoming work [Camphuis, 
Benabed et al. in prep]

21

A. High precision 

B. Robust against input spectrum 

C. Does not create additional 
variance or coupling 

D. Can be propagated to the 
covariance



0 200 400 600 800 1000
`

10°4

10°3

10°2

10°1

100

101

102

103

104

A
m

p
li
tu

d
e

of
co

va
ri

an
ce

co
u
p
li
n
g

ke
rn

el
s

£̄
`,

5
0
0

5
0
0
,5

0
0

Cth
`

Without holes in the mask

With holes in the mask

Caveat
Why ? 

• The holes in the mask gives  
an offset 

• This will be convoluted with 
the CMB power spectrum 

• (In the plot, s have been 
renormalized)
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Signal to noise
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