

ished by the European Comm

Building the SPT-3G 2019/2020 Hkelihood Etienne Camphuis (IAP) with Silvia Galli, Karim Benabed and Eric Hivon

Colloque national CMB-France #4 - November 23rd, 2022

A. Overview of SPT-3G 2019/2020 B. High precision inpainting of the SPT-3G data

Outline

South Pole Telescope Details

- 10-meter diameter telescope located at the South Pole in optimal conditions for microwave observations, observing CMB anisotropies
- SPT-3G: state-of-the art instrument with 3 frequencies 90, 150, 220 GHz
- Beam: 1.6'/1.2'/1.0' (*Planck:* 5')
- Final map depth: 2.8, 2.6, 6.6 μ Karcmin (T) vs *Planck* 40 μ K-arcmin
- See <u>Sobrin et al. 2022</u> for more details

Credits: F. Guidi

South Pole Telescope Forecasts

- 10-meter diameter telescope located at the South Pole in optimal conditions for microwave observations, observing CMB anisotropies
- SPT-3G: state-of-the art instrument with 3 frequencies 90, 150, 220 GHz
- Beam: 1.6'/1.2'/1.0' (*Planck*: 5')
- Final map depth: 2.8, 2.6, 6.6 μ Karcmin (T) vs *Planck* 40 μ K-arcmin
- See <u>Sobrin et al. 2022</u> for more details

Forecasts on Λ CDM parameters with SPT-3G (5 years) data

Credits: Silvia Galli

4

A. Overview of SPT-3G 2019/2020B. High precision inpainting of the SPT-3G data

Outline

Analytical covariance

 For SPT-3G 2018, mockobservations are used to build the covariance matrix of the data vector of primary anisotropies (TTTEEE) => we replace it by a precise and fast analytical computation of the covariance developed in [Camphuis et al. 2022] Power spectrum gaussian likelihood : $-\ln \mathscr{L}(\hat{C} \mid \Lambda CDM)$

$$\propto \frac{1}{2} (\hat{C} - C^{\text{th}})^T \Sigma^{-1} (\hat{C} - C^{\text{th}}))$$

Analytical covariance

- For SPT-3G 2018, mockobservations are used to build the covariance matrix of the data vector of primary anisotropies (TTTEEE) => we replace it by a precise and fast analytical computation of the covariance developed in [Camphuis et al. 2022]
- The mask W is a key ingredient of the covariance

Power spectrum gaussian likelihood : $-\ln \mathscr{L}(\hat{C} \mid \Lambda CDM)$ $\propto \frac{1}{2} (\hat{C} - C^{\text{th}})^T \Sigma^{-1} (\hat{C} - C^{-1})^T \Sigma^{-1} (\hat{C}$ Fiducial power spectrum $\operatorname{Cov}(\hat{C}_{\ell}, \hat{C}_{\ell'}) = 2\Xi_{\ell\ell'}[W^2$ $\bar{\Theta}^{\ell_1 \ell_2}$ $\ell_1\ell_2$ Baseline « winter » field

Effect of the mask

σ : correlation matrix

masked simulated cmb sky [muK]

Analytical approximation of the covariance works

Effect of the mask

σ : correlation matrix

Analytical approximation of the covariance works

Analytical approximation of the covariance fails because it does not model correctly the additional coupling and additional variance

• Gaussian constrained realization of the CMB anisotropies: $\begin{pmatrix} T^{inp} \\ Q^{inp} \\ U^{inp} \end{pmatrix} = X \begin{pmatrix} T^{data} \\ Q^{data} \\ U^{data} \end{pmatrix} + (1 - X) \begin{pmatrix} T^{random} \\ Q^{random} \\ U^{random} \end{pmatrix}$

 Challenges: high precision inpainting of high resolution maps with many sources (N_{sources} ~ 2000) of varying radii.

• Gaussian constrained realization of the CMB anisotropies: $\begin{pmatrix} T^{inp} \\ Q^{inp} \\ U^{inp} \end{pmatrix} = X \begin{pmatrix} T^{data} \\ Q^{data} \\ U^{data} \end{pmatrix} + (1 - X) \begin{pmatrix} T^{random} \\ Q^{random} \\ U^{random} \end{pmatrix}$

 Challenges: high precision inpainting of high resolution maps with many sources (N_{sources} ~ 2000) of varying radii.

Real map [muK]

• Gaussian constrained realization of the CMB anisotropies: $\begin{pmatrix} T^{inp} \\ Q^{inp} \\ U^{inp} \end{pmatrix} = X \begin{pmatrix} T^{data} \\ Q^{data} \\ U^{data} \end{pmatrix} + (1 - X) \begin{pmatrix} T^{random} \\ Q^{random} \\ U^{random} \end{pmatrix}$

 Challenges: high precision inpainting of high resolution maps with many sources (N_{sources} ~ 2000) of varying radii.

- Gaussian constrained realization of the CMB anisotropies: $\begin{pmatrix} T^{\text{inp}} \\ Q^{\text{inp}} \\ U^{\text{inp}} \end{pmatrix} = X \begin{pmatrix} T^{\text{data}} \\ Q^{\text{data}} \\ U^{\text{data}} \end{pmatrix} + (1 - X) \begin{pmatrix} T^{\text{random}} \\ Q^{\text{random}} \\ U^{\text{random}} \end{pmatrix}$
 - Optimal CMB reconstruction Wiener filtering
- Challenges: high precision inpainting of high resolution maps with many sources

 $(N_{\rm sources} \sim 2000)$ of varying radii.

- Gaussian constrained realization of the CMB anisotropies: Trandom T^{inp} **T**data Q^{data} **O**^{random} Q^{inp} ╋ **I** *j*inp *I* / random **I** J data
 - **Optimal CMB reconstruction** Wiener filtering
- Challenges: high precision inpainting of high resolution maps with many sources

 $(N_{\rm sources} \sim 2000)$ of varying radii.

- Gaussian constrained realization of the CMB anisotropies T^{inp} **T**data Trandom Q^{data} \mathbf{Q}^{inp} **O**random +(1 - X)**I** /data **I** Jinp **T** random Anti-filtered Filtered Inpainted random data data realization • $\langle \hat{C}_{\ell}^{\text{inp}} \rangle = \langle \hat{C}_{\ell}^{XD} \rangle + \langle \hat{C}_{\ell}^{(1-X)R} \rangle = \langle \hat{C}_{\ell}^{\text{data}} \rangle$
 - Why adding a random CMB? It allows to have an unbiased spectrum! But inpainted CMB is **not** true CMB

250

Our test pipeline

- In the following slides, I will show a series of tests asserting the validity of our method
- See pipeline to the right
- Plots will show the bias in units of cosmic deviation + noise $\langle \hat{C}_{\ell}^{inp} \rangle - \langle \hat{C}_{\ell}^{bare} \rangle$ $\sigma\{C_{\ell}^{bare}\}$
- I will show only temperature, but polarization (TE, EE) is similar

 $C_{\rho}^{\text{fid}} \to T \to \hat{C}_{\rho}^{\text{bare}}$ Inpainting $\rightarrow \hat{C}^{inp}_{\wp}$ Tinp

1. High precision

- We restrict our inpainting to using nearby pixels for efficiency purpose
- We need to use a certain amount (more than 1 deg around the hole!) to reach high precision
- This corresponds to the size of the CMB correlation
- We reach less that 5% of cosmic variance + noise error

2. Robustness against input spectrum

variations of the input spectrum

2. Robustness against input spectrum

We show that we are robust against variations of the input spectrum

3. Response function

We show that the response function is negligible

4. Impact on covariance

- We compare the covariance of pure CMB simulations with the covariance of inpainted simulations
- We show that our inpainting does not create any additional variance or coupling
- Our inpainted CMB behaves like a CMB

We do not want to use the random realization as true data

We can rescale the covariance
$$\Sigma^{\text{inp}} = \frac{1}{\rho} \bigotimes \frac{1}{\rho} \Sigma^{\text{analytical}}$$

6. Efficiency

- Wiener filtered is obtained analytically $\begin{pmatrix} T^{\text{inp}} \\ Q^{\text{inp}} \\ U^{\text{inp}} \end{pmatrix} = X \begin{pmatrix} T^{\text{data}} \\ Q^{\text{data}} \\ U^{\text{data}} \end{pmatrix} + (1 - X) \begin{pmatrix} T^{\text{random}} \\ Q^{\text{random}} \\ U^{\text{random}} \end{pmatrix}$
 - Optimal CMB reconstruction Wiener filtering
- Applying the filter takes most of the CPU-time (because of inversions!)

- Our code is parallelized
- Allows inpainting of multiple maps at the same time => divide the effective time by the number of maps
- on 64 CPUs: 30 mins per map (for 50 maps) for 2000 sources to inpaint

Conclusions

- SPT-3G will put tight constraints on parameters
- In order to use our analytical framework for the covariance matrix, we decided to inpaint our maps

+ 1 + * + +

• Upcoming work [Camphuis, Benabed et al. in prep] Credits: Aman Chokshi

A. High precision
B. Robust against input spectrum
C. Does not create additional variance or coupling
D. Can be propagated to the covariance

Caveat	10^4
Why? 900:200 9	10 ³
• The holes in the mask gives $\bar{\Theta}$ an offset	10 ² 10 ¹
• This will be convoluted with the CMB power spectrum	10^{0} 10^{-1}
$\operatorname{Cov}(\tilde{C}_{\ell}, \tilde{C}_{\ell'}) = 2\Xi_{\ell\ell'}[W^2] \sum_{\ell_1\ell_2} C_{\ell_1}^{\operatorname{th}} \bar{\Theta}_{\ell\ell'}^{\ell_1\ell_2}[W] C_{\ell_2}^{\operatorname{th}}$	10^{-2}
• (In the plot, $\overline{\Theta}$ s have been renormalized)	10^{-4}

Signal to noise

23