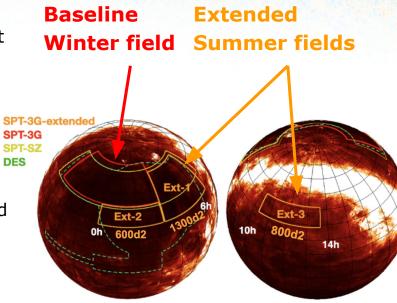


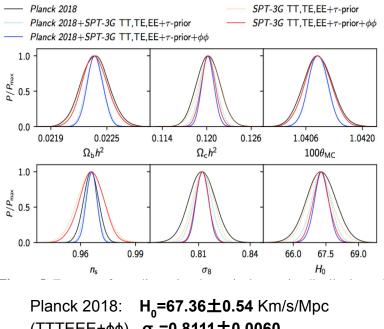
Updates from SPT-3G


K. Benabed, F. Bouchet, E. Camphuis, A. Doussot, F. Guidi, E. Hivon, Ali Rida Khalifeh IAP-Institut d'Astrophysique de Paris

CMB France#4, 23/11/2021

The South Pole Telescope

- SPT is a **10m telescope** at the Amundsen-Scott station at South Pole, lead by the **University of Chicago**.
 - SPT-SZ 2007-2011 (2500deg2, intensity only, 95, 150, 220 GHz)
 - SPTpol 2012-2016 (500deg2, polarization, 95, 150 GHz).
 - SPT-3G is the third generation camera, taking data from 2017 (main survey 2019-2023/24, intensity and polarization)
- SPT3-3G has high resolution (1.2'@150Ghz) and high sensitivity (2.2µK-arcmin) with 16 000 at 95, 150, 220 GHz.
- Our goal is to measure **cosmological parameters** that will be as tight or **tighter than** the ones from **Planck**.


SPT-3G (2017-2023)			
95, 150, 220 GHz			
1500 deg ² Winter (baseline)	3000 deg ² Summer (extended)		
@150 GHz in TT 2018: 15µK-arcmin 2019+2020:5µK-arcmin Goal: 2.2µK-arcmin	@150 GHz 2yr: 12 μK-arcmin		

SPT-3G expected to reach comparable to \sim **S4** in the winter field by the end of observations in the next two years

SPT-3G will be super powerful

- SPT-3G winter alone will be able to constrain H₀ and other parameters as well or better than Planck! (except for n_s, which are more sensitive to sample variance).
 - a. $\sigma(H0)=0.66 \text{ Km/s/Mpc}$ and $\sigma(\sigma_8)=0.006$ from SPT3G lensed TT,TE,EE+tauprior(0.007) (without any other Planck data). Comparable precision to Planck.
 - b. Adding $\phi\phi \sigma(H0)=0.34$ and $\sigma(\sigma_8)=0.004$ (* ignores correlations between lensed spectra and $\phi\phi$).
 - c. SPT-3G winter 5yr +Planck will improve most parameters by a factor of 2.
- 2. We will test LCDM in different regimes from Planck. We will be able to constrain many extended models e.g. for tensions.
- Summer fields have the potential to further improve these numbers (~20%).

(TTTEEE+ $\phi\phi$) σ_8 =0.8111±0.0060 Riess 2021: H₀=73.04±1.04 DES Y3: = σ_8 =0.733±0.039 (LCDM+mnu)

We will be leading the knowledge of the universe with this data. This comes with great responsibility!

THIS LEVEL OF PRECISION REQUIRES A ROBUST ANALYSIS PIPELINE!

SPT members at IAP

Postdoc: Federica Guidi Summer fields

Postdoc: Ali Rida Khalifeh Extended models Simulations

Research Engineer: Aristide Doussot

PhD student: Etienne Camphuis 2YR Winter fields

Staff:

Karim Benabed

François Bouchet

Silvia Galli

Eric Hivon

SPT members at IAP

PhD student: Etienne Camphuis 2YR Winter fields

Postdoc: Ali Rida Khalifeh Extended models Simulations

Research Engineer: Aristide Doussot

Staff:

Karim Benabed

François Bouchet

Silvia Galli

Eric Hivon

SPT meeting, KICP-Chicago, July 2022

A few results

First release of SPT-3G on cosmological parameters 2018.

- Balkenhol, et al., Constraints on LCDM extensions from the SPT-3G 2018 EE and TE power spectra, 2021.
- Dutcher, D., et. al., Measurements of the E -mode polarization and temperature-E -mode correlation of the CMB from SPT-3G 2018 data, 2021.

Estimation of covariance matrices for the next SPT-3G release

 Camphuis, E., Benabed, K., Galli, S., Hivon, 'E., Lilley, M., 2022, Accurate CMB covariance matrices: exact calculation and approximations, 2022

Constraining cosmological tensions with SPT

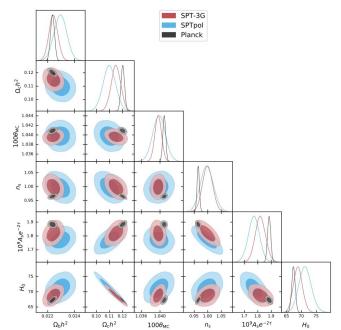
- Smith, T.~L., Lucca, M., Poulin, V., Galli, S. et al., 2022, Hints of Early Dark Energy in Planck, SPT, and ACT data: new physics or systematics? 2022
- Galli, S., Pogosian, L., Jedamzik, K., Balkenhol, L., 2022, Consistency of Planck, ACT, and SPT constraints on magnetically assisted recombination and forecasts for future experiments.

Study of systematics from the SPT-3G

 Galli, S., Wu, W.~L.~K., Benabed, K., et al., 2021, Breaking the degeneracy between polarization efficiency and cosmological parameters in CMB experiments

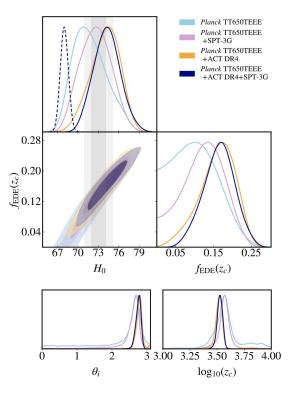
SPT3G-2018 TEEE (Dutcher+2021, Balkenhol+2021)

- 1500 deg2 region at 95, 150, and 220 GHz taken over a four month period in 2018, only half of the focal plane. Flat sky, simulated covariance matrix.
- Already better than SPTpol (3 years of obs.), 21, 15, 58 uK2 in TT @95,150,220 Ghz.
- Errors still three times larger than Planck for the moment.
 Under ACDM, on the 5 parameters, Planck and SPT are perfectly consistent.


•
$$H_0 = 68.8 \pm 1.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

$$\circ \sigma_8 = 0.789 \pm 0.016$$

$$A_{1}^{\circ} = 0.98 \pm 0.12$$

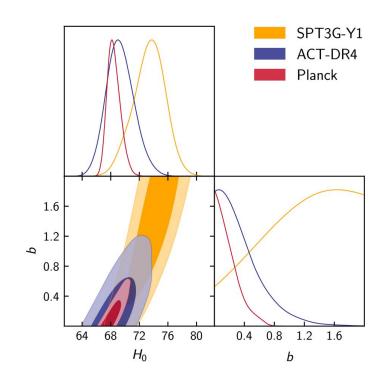

• ACDM is a good fit to the data, $\chi^2 = 513$ for 528 bandpowers (PTE=61%).

Early Dark Energy and Hubble tension

- 1. EDE assumes the presence of an ultra-light scalar field φ slow-rolling down an axion-like potential of the formV(φ) \propto [1-cos(φ /f)]ⁿ, where f is the decay constant of the field.
- 2. Parametrized by 3 parameters: f_{EDE} fraction of the total energy density in EDE at the critical redshift z_c with an initial field value θ .
- 3. EDE helps with the Hubble tension because the accelerated expansion of the universe at $z \sim 3000$ allows the decrease of sound horizon r_s without spoiling too much the damping tail (although it still decreases Silk damping).

We showed that there are small hints of Early dark energy from Planck, Planck+ACT or Planck+SPT, if one excises the Planck TT>650.

T. L. Smith, M. Lucca, V. Poulin, G. F. Abellan, L. Balkenhol, K. Benabed, S. Galli, R. Murgia 2022


see also La Posta et al. 2022

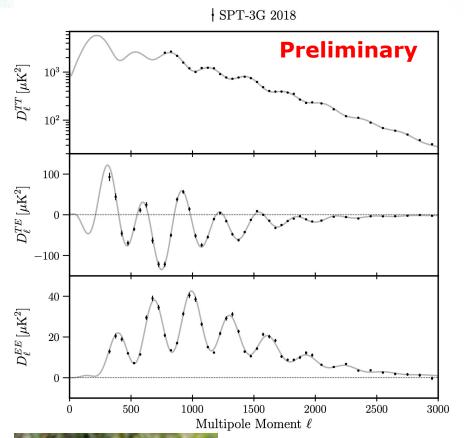
Primordial magnetic fields and CMB

- Goal: set constraints and forecasts on PMF (Pogosian & Jedamzik 2020)
- This PMF model creates clustering in baryons at very small scales. b is the clustering factor

$$b \equiv \left(\frac{\langle \rho_b^2 \rangle - \langle \rho_b \rangle^2}{\langle \rho_b \rangle^2}\right)$$

- Makes recombination happen earlier, changing the width of the last scattering surface.
- It has an impact on position of the peaks (hence alleviate H₀ tension), damping tail, polarization amplitude.
- It is a <u>toy model</u>.

SPT-3G TEEE less constraining then ACT-DR4 for PMF because ACT-DR4 includes TT (which breaks in particular the ns-omb degeneracy).


This project was key to realize that we needed to include TT, and to also to better understand our covariance matrix.

S. Galli, L. Pogosian, K. Jedamsik , L. Balkenhol 2021

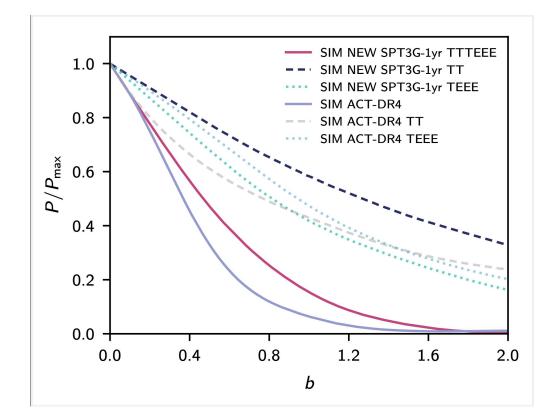
SPT-3G 2018 TTTEEE (in preparation)

SPT-SZ (2007-2011)	SPTpol (2012-2016)	SPT-3G (2017-2023)	
95, 150, 220 GHz	95, 150 GHz	95, 150, 220 GHz	
2500 deg ²	500 deg ²	1500 deg ² Winter (baseline)	2500 deg ² Summer (extended)
18 µK-arcmin@150 GHz	5.5 μK-arcmin@150 GHz	@150 GHz 2018:15μK-arcmin Goal: 2.2μK-arcmin	@150 GHz 2yr: 12 μK-arcmin
Temperature only (Story+ 2012)	Polarization only (Henning+ 2017)	Release 2018: Polarization only (Balkenhol+ et al. 2021, Dutcher+) Polarization+Temperature (Balkenhol+ in preparation)	

Including TT into SPT-3G

L. Balkenhol+ in preparation

Ratio of error bars on LCDM SPT-3G 2018/ACT-DR4 TTTEEE TEEE


SPT/ACT	TTTEEE	TEEE
obh2	1.03	0.91
omch2	1.02	0.84
H0	1.01	0.83
logA	1.05	0.8
theta	1	0.88
ns	1.07	0.82
omegam*	0.98	0.83
clamp*	1.08	0.72
sigma8*	1.06	0.82

SPT-3G 2018 TTTEEE and ACTDR4 and have same constraints.

SPT3G 2018 TEEE sets stronger constraints w.r.t to ACT by ~20%.

It will be crucial to ensure consistency between the two experiments.

Simulations for SPT-3G TTTEEE 2018 on PMF

SPT-3G 2018 TTTEEE and ACTDR4 have comparable constraining power also on the PMF.

L. Balkenhol+ in preparation

Preliminary

Innovations in SPT-3G 2018 TTTEEE

Blinding: We implemented a blinding procedure. We imposed to pass a number of null tests and consistency checks at the power spectrum and parameter level. We learnt a lot and improve for the next release.

Emulator of Boltzmann code: use of Cosmopower (Alessio Spurio-Mancini et al 2022) to speed up chains allowed us to perform a ton of consistency tests at the parameters level. Alessio worked with us to train Cosmopower for our needs.

https://github.com/alessiospuriomancini/cosmopower/

Covariance matrix: Improved the conditioning of the matrix, now more precise.

What's next 2019/2020

- SPT-3G 2018 TTTEEE should be published in a few weeks.
- Lensing from 2018 data
- Next release: SPT-3G 2019/2020 results (several months away) from winter field (Etienne's talk) and summer fields (Federica's talk).
- Lensing from 2019/2020.

novations in the pipeline

- Analytical covariance matrix instead of numerical one (to increase accuracy) (Camphuis+ 2022)
- Impainting of point sources instead of masking (see Etienne's talk)
- Curved instead of flat sky
- Cosmopower
- Blinding