Frequency dependence of the thermal dust E/B ratio and **EB** correlation: insights from the spin-moment expansion

Vacher et al 2022d, <u>arXiv:2210.14768</u>

Vacher- CMB-france #4 2022

L. Vacher - J. Aumont - F. Boulanger - L. Montier - V. Guillet - A. Ritacco - J. Chluba

photo: Slovinsky

Spectral parameters (e.g. β , T for the MBB) of SEDs change with physical conditions across the sky/galaxy (Predicted theoretically and verified observationally e.g. [Pelgrims 2021])

Fixed SED in *every* volume element ★ Line-of-sight average (always there!)

Fixed SED in *every* volume element ★ Line-of-sight average (always there!) ★ Experimental beam and frequency average

al,m

Fixed SED in *every* volume element ★ Line-of-sight average (always there!) ★ Experimental beam and frequency average ★ Map operations average (e.g., spherical harmonic expansion)

Q and U can be united to form the complex number (spinor)

• It's module, P_{μ} is called the polarized intensity Under reasonable assumption, $P_{\nu} \propto I_{\nu}$ is the SED. • It's phase, ψ is called the polarization angle

L. Vacher- CMB-france #4 2022

 $\mathcal{P}_{\mu} := \mathcal{Q}_{\mu} + iU_{\mu} = P_{\mu}e^{2i\psi}$

thorsen of this size way

You expect that, locally, a dust grain emits with a modified black body (MBB) (at CMB wavelength) [Planck 2018 XI]

7 John Mullet

the dample said size days

 $P_{\nu} = A \varepsilon_{\nu}(\beta, T)$

You expect that, locally, a dust grain emits with a modified black body (MBB) (at CMB wavelength) [Planck 2018 XI]

 $P_{\nu} = p_0 \tau \cos(\gamma)^2 B_{\nu}^{\text{Pl}}(T) \left(\frac{\nu}{\nu_0}\right)$

B^{Pl}_ν Planck law/Black-body
 ν₀ reference frequency
 T temperature
 β spectral index

L. Vacher- CMB-france #4 2022

oody y « Emissivity » Spectral parameters

You expect that, locally, a dust grain emits with a modified black body (MBB) (at CMB wavelength) [Planck 2018 XI]

9

$P_{\nu} = p_0 \tau \cos(\gamma)^2 B_{\nu}^{\text{Pl}}(T) \left(\frac{\nu}{\nu_0}\right)$

L. Vacher- CMB-france #4 2022

• p_0 polarization fraction

• γ orientation of the Galactic magnetic field in the Plane of the

The Polarized mixing

Averaging over spinors with different ψ and β , *T*, *A*:

 $\langle \mathcal{P}_{\nu} \rangle = A_1 \varepsilon_{\nu} (\beta_1, T_1) e^{2i\psi_1} + A_2 \varepsilon_{\nu} (\beta_2, T_2) e^{2i\psi_2} + \dots$ $\neq \bar{A}\varepsilon_{\nu}(\bar{\beta},\bar{T})e^{2i\bar{\psi}}$

SEDs are not linear and they are weighted by complex phases!

L. Vacher- CMB-france #4 2022

 $\psi_2, \beta_2, T_2, A_2$

 $\psi_1, \beta_1, T_1, A_1$

White and ship as Anothing the and a straight

$\langle \mathscr{P}_{\nu} \rangle = A_1 \varepsilon_{\nu}(\beta_1, T_1) e^{2i\psi_1} + A_2 \varepsilon_{\nu}(\beta_2, T_2) e^{2i\psi_2} + \dots \neq \bar{A}\varepsilon_{\nu}(\bar{\beta}, \bar{T}) e^{2i\bar{\psi}}$

• SED distortions: $|\langle \mathcal{P}_{i} \rangle|$ is not the canonical SED (a MBB) anymore [Chluba 2017]

• Polarisation angle frequency dependence: $\psi_{\langle \mathcal{P}_{\nu} \rangle} = \psi_{\nu}$ [Tassis 2015]

L. Vacher- CMB-france #4 2022

Alter and ship and when

$\langle \mathcal{P}_{\nu} \rangle = A_1 \varepsilon_{\nu} (\beta_1, T_1) e^{2i\psi_1} + A_2 \varepsilon_{\nu} (\beta_2, T_2) e^{2i\psi_2} + \dots$

$=\varepsilon_{\nu}(\bar{\beta},\bar{T})\left(\mathcal{W}_{0}+\mathcal{W}_{1}^{\beta}\ln\left(\frac{\nu}{\nu_{0}}\right)+\cdots\right)$

spin-moments: Both effects can be modeled/predicted using a moment expansion of the polarization spinor [Vacher 2022b]

L. Vacher- CMB-france #4 2022

hoter a side side and a start

$\langle \mathscr{P}_{\nu} \rangle = A_1 \varepsilon_{\nu}(\beta_1, T_1) e^{2i\psi_1} + A_2 \varepsilon_{\nu}(\beta_2, T_2) e^{2i\psi_2} + \dots$

$=\varepsilon_{\nu}(\bar{\beta},\bar{T})\left(\frac{\mathcal{W}_{0}}{\mathcal{W}_{0}}+\mathcal{W}_{1}^{\beta}\ln\left(\frac{\nu}{\nu_{0}}\right)+\cdots\right)$

With

$\mathcal{W}_0 = \sum A_i e^{2i\psi_i} \qquad \qquad \mathcal{W}_1 = \sum A_i (\beta_i - \overline{\beta}) e^{2i\psi_i}$

$\langle \mathcal{P}_{\nu} \rangle = A_1 \varepsilon_{\nu}(\beta_1, T_1) e^{2i\psi_1} + A_2 \varepsilon_{\nu}(\beta_2, T_2) e^{2i\psi_2} + \dots$

The leading order can be interpreted as a (complex) correction to the spectral index. $\beta \rightarrow \beta + \Delta \beta$

L. Vacher- CMB-france #4 2022

White and the sector

Spectral dependence of the polarization angle

Spectral dependence of the polarization angle

The same game can be played considering the temperature $(\Delta T \in \mathbb{C})$ or any other SED [Vacher 2022b]

The *E*- and *B*-modes

• Quantifies patterns of the ψ -field

• Any polarized signal $\mathcal{P}_{n}(\vec{n})$ can be decomposed in E- and B- modes (Helmotz theorem) $E_{\nu}(\overrightarrow{n})$ and $B_{\nu}(\overrightarrow{n})$:

 $E + iB = -\bar{\eth}^2 \mathscr{P},$

The *E*- and *B*-modes

• Three angular power-spectra in polarization: \mathscr{D}_{ℓ}^{EE} , \mathscr{D}_{ℓ}^{BB} and \mathscr{D}_{ℓ}^{EB} , Written « EE », « BB » and « EB »

 $\frac{\ell(\ell+1)}{2\pi}\sum_{\chi} (X)^*_{\ell m} (X)_{\ell m}$

The *E*- and *B*-modes Different spectral behavior for E- and B- modes in Planck data

[Ritacco 2022]

Pure E

Infinite filament in front of a null background $E_{\nu} \propto Q$, $B_{\nu} \propto U = 0$

[Zaldariaga 2001]

Infinite filament in front of a null background $E_{\nu} \propto Q,$ $B_{\nu} \propto U = 0$

[Zaldariaga 2001]

Pure E

Polarized mixing

$E_{\nu} \propto Q,$ $B_{\nu} \propto U = 0$

E and B

 $\Psi_{\nu_2}(n)$

 $E_{\nu} \propto Q,$ $B_{\nu} \propto U \neq 0$

Pure E

$E_{\nu} \propto Q,$ $B_{\nu} \propto U = 0$

 $\frac{E_{\nu}}{B_{\nu}} \neq \operatorname{cst} = f(\nu),$

Polarized mixing

$SED(E) \neq SED(B)$,

E and B

$E_{\nu} \propto Q,$ $B_{\nu} \propto U \neq 0$

 $EE/BB = f(\nu),$

$SED(EE) \neq SED(BB) \neq SED(EB)$,

From Q and U to E and B

$\langle E_{\nu} + iB_{\nu} \rangle = - \bar{\delta}^2 \langle P_{\nu} \rangle$

With: $W_{k}^{\beta} = - \delta^{2} \mathcal{W}_{k}^{\beta}$

E and B should be treated together as real and complex components of a single complex number! (as Q and U)

 $=\varepsilon_{\nu}(\bar{\beta},\bar{T})\bigg|\mathbb{W}_{0}+\mathbb{W}_{1}^{\beta}\ln\bigg(\frac{\nu}{\nu_{0}}\bigg)+\ldots\bigg|,$

From Q and U to E and B

$\langle E_{\nu} + iB_{\nu} \rangle = -\bar{\partial}^2 \langle P_{\nu} \rangle$

The complex phase of E + iB will become frequency dependent: $E/B = f(\nu)$

L. Vacher- CMB-france #4 2022

From E and B to EE, EB and BB

With $X, X' \in \{E, B\}$ Knowing the β, T, ψ, A distributions, one can compute the spinmoments maps \mathcal{W}_{k}^{β} and predict the behavior of $\langle \mathscr{D}_{\ell}^{XX'} \rangle$

L. Vacher- CMB-france #4 2022

 $+\mathscr{D}_{\ell}^{\mathbb{W}_{1,X}^{\beta}\mathbb{W}_{1,X}^{\beta}}\ln\left(\frac{\nu}{\nu_{0}}\right)^{2}+\ldots$

From E and B to EE, EB and BB

The orange term (largest one) can be interpreted as a ℓ dependent correction to $\beta: \bar{\beta} \to \bar{\beta}_{\varphi}^{XX'}$ Hence, after corrections:

L. Vacher- CMB-france #4 2022

 $\langle \mathscr{D}_{\ell}^{XX'} \rangle = \varepsilon_{\nu} \left(\bar{\beta}, \bar{T} \right)^{2} \mathscr{D}_{\ell}^{\mathbb{W}_{0,X}\mathbb{W}_{0,X'}} \left(1 + \frac{\left[\mathscr{D}_{\ell}^{\mathbb{W}_{1,X}\mathbb{W}_{0,X'}} + \mathscr{D}_{\ell}^{\mathbb{W}_{0,X}\mathbb{W}_{1,X'}} \right]}{\mathscr{D}_{\ell}^{\mathbb{W}_{0,X}\mathbb{W}_{0,X'}}} \ln \left(\frac{\nu}{\nu_{0}} \right)$

 $+\mathscr{D}_{\ell}^{\mathbb{W}^{\beta}_{1,X}\mathbb{W}^{\beta}_{1,X'}}\ln\left(\frac{\nu}{\nu_{0}}\right)^{2}+\ldots\right)$

28

A Toy-model filament

Simple model: Filament in front of a background Sums of 2 MBB in the filament

L. Vacher- CMB-france #4 2022

Toy-model filament $\psi(\vec{n})$ 100 GHz

 $\psi(\overline{n})$

A Toy-model filament

Simple model: Filament in front of a background Sums of 2 MBB in the filament

Non zero EB: Phenomenon of « magnetic misalignment» [Clark 2021],[Cukierman 2022] Toy-model filament $\psi(\vec{n})$ 100 GHz

 $\psi(\vec{n})$

A Toy-model filament

Simple model: Filament in front of a background Sums of 2 MBB in the filament

Spin moments: Allow to understand and model the spectral dependence of the polarized power-spectra

31

Considering the PySM models: • d0: single MBB with constant β and T over the sky • d1: single MBB with varying β and T over the sky • d10: refined version of d1 • d12: 6 layer MBB with different β and T over the sky Using the Planck galactic mask (PLA) with $f_{skv} = 0.8$ and a 2° apodisation scale. A single bin of $\ell \in \{2,200\}$, $n_{side} = 128$, purification of E- and Bmathemark and and and and and and it is a submodes 32

Considering the PySM models: • d0: single MBB with constant β and T over the sky • d1: single MBB with varying β and T over the sky • d10: refined version of d1 • d12: 6 layer MBB with different β and T over the sky ! Not expected to reproduce the reality of the dust EB signal But provide still a good illustration of our points \land Amplitudes of the effects will change strongly depending on the ℓ range and f_{sky} considered mil and size Anothing the

PySM models

 Is a function of frequency as expected! Spin moments = good model EE/BB is a probe of polarized mixing independent of the canonical SED (MBB)

Looking at distortions from MBB of EB signal. β and \overline{T} are fitted over the EB signal

1.00 -

 $L_{\nu}^{E\times B}/r_{\nu_{0}}^{E\times B}(\bar{\beta}_{EB})$

0.96

Looking at distortions from MBB of EB signal. β and \overline{T} are fitted over the EE signal

2.0 $(\bar{\beta}^{EE})$ 1.8 $E \times B_{V_0}$ 1.67 1.4

1.0

Using the simple model:

 $\tilde{r}_{\nu}^{E \times B}$

and looking at deviations:

 $\frac{1.6}{2}$ $\frac{1.6}{2}$ $\frac{1.6}{2}$ $\frac{1.6}{2}$ $\frac{1.4}{2}$ $\frac{1.2}{2}$ $\frac{1.2}{2}$ $\frac{1.2}{2}$ $\frac{1.2}{2}$ $\frac{1.2}{2}$ $\frac{1.2}{2}$ 1.6

0.8

0.6

L. Vacher- CMB-france #4 2022

37

Conclusions

When averaging over different polarized signal (polarized mixing):

EE, BB and EB will have different SEDs and hence different pivots spectral parameters β_ℓ and T
_ℓ. (Observed in Planck data [Ritacco et al (2022)])
EE/BB will become frequency dependent (no matter what the canonical SED is) and provides a model independent probe of spatial variations of spectral parameters and polarization angles
EB is distorted. EE or EExTB/TE can not be used as proxies for EB.
Spin-moment expansion allows to model the SEDs, suggesting a common treatment for E and B (as for Q and U)

All these considerations can be applied to any SEDs (synchrotron)

how which as have

Thanks for listening!

First conclusions

In the presence of polarized mixing (i.e. average of different polarized signals) :

Pixel level

• \mathcal{P}_{u} , Q_{u} and U_{u} are not MBBs anymore (SED distortions) v becomes frequency dependent \leftrightarrow Q and U have different moments If Q and U are treated independently: $\beta^{Q} \neq \beta^{U}$

L. Vacher- CMB-france #4 2022

Power spectra level

• *EE*, *BB* and *EB* are not MBBs squared anymore (SED distortions) • *EE/BB* becomes frequency dependent $\leftrightarrow EE$ and BB have different moments If E and B are treated independently: $\beta_{\ell}^{EE} \neq \beta_{\ell}^{BB} \neq \beta_{\ell}^{EB}$

