

Galaxy clusters in mm wavelengths: combine Planck and SPT

Outline

Introduction

Galaxy Clusters

- Largest gravitationally bound structures in the Universe
- Peaks in the cosmic web
- Multi-component systems:
 - Observables at different wavelengths

Dependence on cosmological parameters: σ_8 , Ω_m $\sigma^2 = \frac{1}{2\pi^2} \int dk \, k^2 P(k,z) \, |W(kR)|^2$

Credit: Hirschmann et al. 2014

CMB France, Nov. 2022

Cluster cosmology

Cluster cosmology: *mass* and *redshift* of clusters

Cluster cosmology

5 17

CMB France, Nov. 2022

tSZ clusters: Planck

Planck Scaling Relations

Planck cosmological cluster sample: 439 clusters

Cosmology and mass calibration

7 17

- Tight correlation between cosmological and scaling relation parameters
- Mass calibration: largest source of uncertainty in current cluster cosmology

Tension or mass calibration?

CMB + NCtSZ	
$(1-b) = 0.58 \pm 0.04$	P15
$(1-b) = 0.65 \pm 0.04$	LCDM
$(1-b) = 0.67 \pm 0.04$	Neutrinos
$(1-b) = 0.63 \pm 0.04$	DE
$(1-b) = 0.62 \pm 0.03$	P18
Salvati et al., A&A 614	A13 (2018)

Laura Salvati

CMB France, Nov. 2022

Mass calibration might be affected by selection choices

- Multi-wavelengths observations for the full cluster sample
- Independent constraints on mass calibration parameters

Combine Planck and SPT cluster catalogs

Planck	Planck 2015. A&A 594, A24 (2016) Planck 2015. A&A 594, A27 (2016)	SPT-SZ	SPT. Bleem at al., APJ Suppl. 216 (2015) no.2, 27 SPT. Bocquet et al., APJ 878 (2019) no.1, 55
 Survey characteristics: 65% of the sky (~2681) Frequencies: 100, 143, GHz (HFI instrument) Resolution: [5',10'] 	5 deg2) 217, 353, 545, and 857	 Survey charact 2500 deg2 Frequencia Resolution 	teristics: 2 area les: 95, 150 GHz n: ~ 1'
 Cosmological Catalog 439 clusters z = [0,1] 		 Cosmological o 365 cluste z = [0.25,1 	catalog ers 1.7]
 Cluster extraction: Matched Arnaud profile 	I Multi-filters approach	 Cluster extract Beta profil INTERNAL Mat 	tion: Matched Multi-filters approach le
 EXTERNAL Mass calibration X-ray and WL observat 	n ions	 X-ray and empirical, 	WL observations multi-observable approach

9 (17)

Salvati, Saro + SPT collab. *ApJ 934, no.2, 129 (2022)*

Combine Planck and SPT-SZ cluster likelihood

Pre-processing of Planck map

- Starting from original Planck sky
- 417 patches, after applying galactic mask
- Removing 16 sky patches completely overlapping with SPT sky
- Reducing sky fraction of 35 patches partly overlapping with SPT sky

Pre-processing of Planck cluster catalog

 Removing 27 Planck clusters overlapping with SPT catalog + 2 clusters in removed patches

Planck vSPLIT cluster counts likelihood

- z <= 0.25
 - 271 clusters, 417 patches
- z > 0.25
 - 139 clusters, 401 patches

 $\ln \mathscr{L}_{\rm TOT} = \ln \mathscr{L}_{\rm SPT} + \ln \mathscr{L}_{\rm P1} + \ln \mathscr{L}_{\rm P2}$

CMB France, Nov. 2022

Salvati, Saro + SPT collab. *ApJ 934, no.2, 129 (2022)*

(11)(17)

Salvati, Saro + SPT collab. *ApJ 934, no.2, 129 (2022)*

12 17

Cosmology and mass calibration

13 17

Mass catalogues

Released Catalogs

https://pole.uchicago.edu/public/data/sptplanck_cluster/

Cluster masses M₅₀₀

 marginalising over cosmological and scaling relation parameters

Cluster masses M₅₀₀

 fixed values of cosmological and scaling relation parameters

Mass bias

15 17

Upcoming SPT cluster results

- SPT-SZ + SPTpol + DES-Y3 coming up!
- Future: SPT-3G cluster analysis

Expected Number	of S/I	N ≥ 5	Clusters	from	SZ Surveys
-----------------	----------	-------	----------	------	------------

Experiment		Total Clusters			M ^{med}
	Total	$z \ge 1.5$	$z \ge 2$	~	$[10^{14} M_{\odot}]$
SPT-SZ	410	7		0.6	3.6
SPTpol	600	24	3	0.7	2.5
SPT-3G	6935	477	80	0.7	1.3

S. Raghunathan, 2022 ApJ 928 16

16 17

Laura Salvati

 Ω_m

Conclusions and Future developments

Mass calibration: open issue in current cluster cosmology

- Use of external calibrations: necessary starting point
- Need for improvement
 - Larger samples for the calibration
 - Combination with other observations
- NEED TO IMPROVE OUR UNDERSTANDING OF CLUSTER PHYSICS BEFORE TALKING ABOUT TENSIONS!!!

Planck+SPT combination

- Independent calibration of Planck cluster masses
- Next step:
 - Implement same "internal calibration" for Planck cluster analysis
- Ultimate goal: Full coherent analysis
 - Large cluster catalog (z<1.7)
 - Characterise impact of astrophysics on cosmological evolution of clusters

