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Taketani's " Three-Stage Theory”

© Phenomenological stage
A substance presents itself, as it is, in a group of phenomena
Ex : Resonance of hadrons

@ Substantialistic stage
Investigation of the structure of the substance, distinction
from the phenomena
Ex : Discovery of quarks
© Essentialistic stage
Dynamics is understood : interactions and laws of motion are

clarified
Ex : Formulation of QCD

Quantum gravity needs to skip the first stage.
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Causal Sets Theory

Partially ordered set (M, <)

x < x (Reflexivity)
Vx,y,z€ M,{ x<yandy<x = x =y (Acyclicity)
x <yandy <z = x < z (Transitivity)
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Causal Sets Theory

Causal set (c, <)

(¢, <) is a partially ordered set
Vx,yec,{z€c/x<z<y}| <
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Hawking—King—McCarthy—Malament-Levichev Theorem

HKMML theorem :

Let (M1, g1) and (M2, g2) be d-dimensional Lorentzian manifolds
with d > 2 such that the chronological (or timelike) past and
future of each point in space-time is unique.

If there exists a causal bijection between (M, g1) and (Maz, g).
(If 3F 1 (Mg, <1) = (M2, <2)|Vx,y € M1, x <1y & f(x) <2 f(y))

Then (M, g1) and (Mo, g2) are conformally isometric.

This means that the causal structure determine not just one
space-time, but the full conformal equivalence class of it.



Volume element information

If we know only (cy, <), with cy a causal set of N elements, we
cannot recover a volume of space-time out of it.

We need the information contained in p (or €) such that :

N
—/ \/det g d9x.
P v

Sorkin's slogan

Causal order + Spacetime Volume = Geometry
~—

Proto—causality Number
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Formalism

A causal set could be represented by a Hasse diagram.

Om
/\ @ec—<b=<a
b

e {b,a} is alink or a

/ 2-chain
g .y e {c,b,a} is a 3-chain

e {d,a} is a 2-antichain
e Past(a) is the set of all

\“-.
x elements e such that
e < a (the set)
@ This is a Past-finite
' causal set ¢ :

Ve € c, |Past(e)| < oo.



(c,<) + e & (M,g)

Faithful embedding map ¢ : c — (M, g)

@ x <cy < d(x) <m d(y)
@ Embedded points are distributed uniformly with unit density.

@ The characteristic length over which the continuous geometry
varies > mean spacing between embedded points
Poissonian selection of random positions (M, g) — ¢
@ The probability of finding n elements in a spacetime region of
volume V is given by :
pv)ne—pV

P\/(n) = (

n!



Fundamental conjecture

If a causal set ¢ could have arisen from a sprinkling process into
(M, g) "with relatively high probability” :

Sprinkling

(c;<)+e = (M,g) <<:> (e;<) +e (M,g)>

Embedding

The Hauptvermutung of CST :

(c,<) +e ~ (M,g) & (¢,<) + e ~ (M,g)
= (M,g) = (Mg
then (M, g) and (M, g') differ only at scale smaller than p.
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Quantum partition function

We interpret Z = ngeis[g] as 20 =) cca e’lsg‘f) where Q is the

space of all past-finite causal set that we need to construct.

The standard action for causal set is the Benincasa-Dowker action
defined as :
4

Where N,(("") is the total number of k-element order interval in
the causal set ¢}, It gives the Einstein-Hilbert action in the
continuum limit.
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Sequential growth
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As n — oo, this growth process generates the sample space 2 of
countable /abelled past finite causal sets.



Sequential growth

i e

PHYSICAL REQUIREMENTS OF THE DYNAMICS :
e Markov sum rule
@ Internal temporality
@ Discrete general covariance
°

Bell causality



Bell Causality
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Causal Sets Theory

The continuum may be a mathematical construct which
approximates an underlying physical discreteness.

Embeddii
(M.g) === (c,<) +¢
Sprinkling

Causal set approach :

v
v

~ o NN NS

cures divergences in QFT.

cures curvature singularity in GR.

cures infinite entanglement entropy of black holes.
measures metric at sub-Planckian scale.

is compatible with Lorentz invariance.

predicts the right magnitude of A.

could give fruitful formulation of quantum fields dynamics.

could solve the Hard Problem of Consciousness as a birth
process happening in the brain.



Thank you for your attention
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General measure space

Let Q be a non-empty set. 2A C P(Q) is an algebra if :

Qe

(iAcd = A°ec

(i) A1, Ao,y Ap e = U, _; Ak e
2l is closed under finite unions

2 is a o-algebra if is also closed under countable unions.
A € 2 is a measurable set.

(Q,21) is a measurable space.

A measure on a measurable space is a map satisfying :

() p(@)=0
(ii) Aq,..., A, € A pairwise disjoint = u(Uj_; Ax) = D fi—; 1(Ax)

(Q,2(, 1) is a measure space — gives the CST dynamics.



CHK theorem

Caratheodary-Hahn-Kluvnek (CHK) theorem

If 1 is bounded weakly countably additive vector measure over 2 :
u is strongly additive <>3! countably additive extension of u to Gy

@ bounded

supy {sup, 3 [Ix*(u(an)ll:x* € 7, |1x°|| < 1} < oo

oiET

where the second supremum is taken over all partitions 7 of Q
@ weakly countably additive
For every x* € H*, x*(u) countably additive.

& X" (u(LiJa,-)) — Z:X*(u(af))

for infinite sequence {«,} of pairwise disjoint element of 2



CHK theorem

Caratheodary-Hahn-Kluvnek (CHK) theorem

If 1 is bounded weakly countably additive vector measure over 2 :
w is strongly additive <>3! countably additive extension of u to Gy

@ vector measure

DEFINITION 1. A function F from a field & of subsets of a set 2 to a Banach
space X is called a finitely additive vector measure, or simply a vector measure, if
whenever E; and E, are disjoint members of & then F(E, U E;) = F(Ey) +
F(E,).

e strongly additive

1D nlan)l] < oo
n=1

for every sequence {«,} of pairwise disjoint element of 2



CHK theorem simplified

Caratheodary-Hahn-Kluvnek (CHK) theorem

If 1 is bounded weakly countably additive vector measure over 2 :
w is strongly additive <>3! countably additive extension of u to Gy

Variation of u, Ya € 2, where 7 is a finite partition of « :

pl(e) = sup, Y |lu(ai)

a;Em

Measure p is of bounded variation if |u|(2) < co

Theorem : p of bounded variation = pu strongly additive
Theorem : p strongly additive = p bounded

Simplified CHK theorem

If 1 is a weakly countably additive vector measure over 2 :
w of bounded variation =-3! countably additive extension to Gy




Need for extension

cylinder set : cyl(c)) = {c € Q|c|, =} = Ui cyl(c{ﬁ)l) cQ
Nesting property for m > n :

cyl(cp,) Neyl(c)) #0 = cyl(cp,) C eyl(ch)

cyl(ci) € Q. A is generated from the cylinder sets via finite
unions, intersections and set differences.

w(eh) = nleyl(ch))
The event algebra 2 does not suffice to be able to define covariant

observables like the originary event : aorig = (Un>1 Uiez, cyl(c,’;))c.
— One needs to include countable set operations on 2.

Covariant events € Gy / ~

¢~ c & c,c are order-isomorphic to each other



Transitive percolation

Generate a random causal set by the following algorithm :

@ Start with n elements labeled 0,1,2, - - -, n—1
(n = oo not excluded.)

@ With a fixed probability p, introduce a relation between every
pair of points labeled i and j, where / < j.

© Form the transitive closure of these relations (e.g. if 2 <5
and 5 < 8 then enforce that 2 < 8.)

The transition probability v, from ¢! to a specified child cﬂ(_(_)l :

o) = (1 - =

m = number of maximal elements in the past S of the new element
w = size of the past S of the new element

PHYSICAL REQUIREMENTS OF THE DYNAMICS : v



Physical requirement for transitive percolation

v Internal temporality
Build into our definition of the growth process

v Discrete general covariance
Net probability of a given ¢! in “manifestly covariant form” is
P(cl) = Wqu(;)_R where L is the number of links in ¢/, R the
number of relations, and W the number of (natural) labelings of c/.

v Bell causality
Consider two different children, one with (m, @) = (my,w1) and
the other with (m, w) = (my, w>)
a&ml’wl) a(’lnlvwl) pm1 qnfwl B pm1 qnlfwl

n

aﬁmz,wz) - Oéﬁrlnzﬂm) pm2 g2 - meqn’—wz

where n’ < n is the cardinality of the union of the precursor sets of
the two transitions.

v/ Markov sum rule
Trivial in a well-defined probabilistic procedure.



General transition probability

Parameters of the growth = g, = probabilities to add a completely
disconnected element at stage n.

o= e () - S

—0 Qwo—k j=

m = number of maximal elements in the past S of the new element
w = size of the past S of the new element

Alternative parameters : t, =Y ;_o(—1)"" k(Z)é

PHYSICAL REQUIREMENTS OF THE DYNAMICS : v/



Physical requirement for general transition probability

v Internal temporality
Build into our definition of the growth process

v’ Discrete general covariance
Probability of a labeled causal set & : P(&l) = HN Y a(i, @i, my)
This is a product over all elements x € ¢ of poset invariant quantities
that depends only on the structure of past(x).
v Bell causality

k n k
ag,ml’wl) _ Oés,nhwl) N ZZO(_]') ("/7(1) qwq1, Z ( 1) ( )qwl P
agmz,m) Oéf,',"z’m) Tio(_l)k ('Zz) qw(;nfk Tio(_l)k ('7;(2) q,:;,k

The ratios depends only on precursor set structure.

v Markov sum rule
Impose a constraint :

N—-1

e S{) 51
()



Corresponding measure space

The dynamics is a specification of the measure over 2.
) ) n
pleyl(ch)) = P(ch) =[] «
i=1
pr = [0,1], w(Q) = p(eyl(ci)) =1

Vo € 8, there exists a smallest n < oo and a subset
S C{1,2,..., |} such that o = |J, s cyl(ck).

p(a) = Pley)

keS

w scalar real measure =—> 1 extends to Gg.



Entropy catastrophe : KR posets in CSG

Lemma (Brightwell, Dowker, Garcia, Henson, Sorkin) :
In the CSG dynamics with t, # 0 for some k > 1, a causet
containing an infinite level almost surely does not occur.

Z O Z( ) n_%:ﬂzjo() < 00

n=|S|+1 I=m

40



Straightforward generalisation

Straightforward generalisation of classical sequential growth, the
transition amplitudes are :

) amw) o~ k(M) a0 iem (BN
An = An = (—1) ( ) = m -
kz_;) k) G-k > (j)t

with now q,, t, € C.

The measure of cyl(c/) € A yields
|Crl1> = ,LL(Cyl(C,’;)) X H A(Cm — Cm—i—l) €C

m in branch

The product is over transition along the nodes from c{ to c}..

PHYSICAL REQUIREMENTS OF THE DYNAMICS : v

41



Physical requirement on CSG

v

v

Internal temporality

Build into our definition of the growth process
Discrete general covariance

= ¢} >=|c] > whenever ¢ ~ ¢/
Bell causality :

m k(m m k (m 1

Af,ml’wl) B AE}TI’WI) - kio(fl) (kl) Qwi—k B klo(fl) (kl) ooy —k
p = @ m: _ m 1 -

A=)~ plma=) ™o 1)k(k2)qw2_k o (=1)F(% )qﬁ,Z P

Markov sum rule

| n+1 >= O(CL _> I )‘C > & Cyl UCyl( n+1

uleyl(c})) = (Ucyl D) =D uleyl(h) = 3 O(ch = i)lei >
J(0) 40

(@}
Qo
1
SO
=
Il
=

42



CHK extension theorem for complex measure space

Simplified CHK theorem

If 1 is a weakly countably additive vector measure over 2 :
1 of bounded variation =-3! countably additive extension to Gy

Define ¢/, > 0 such as 25(0) |A(ch — Ci7(+)1)| =1+4¢ > 1 we have :

max_maxcn Zk O()|k‘

Gt Sl TR

w—1
min _ . Cn_ Z |Z ( )tk’ + |to _]_LCC

= n =
! cheQn ' |Zk:0 () tl | >0 (3) tl !

Theorem (Surya, Zalel) :
w is of bounded variation if >0, (* converges.

w is not of bounded variation if >.°° | (™" diverges.

13



Entropy catastrophe : KR posets in CSG

In complex sequential growth :

oo oo
ZC,r,naX<oo = Z al?) < oo
n=1 n=|S|+1

Personal work in progress.

44



Quantum sequential growth

Event = set of histories : E = {y1,72, ...}

(E) = p(y1)+u(v2)+-+1(v1,72)+1 (71, v3)+1 (72, 73) +... = D(E, E)

I(x,y) = D(x,y) + D(y, x) are interferences terms.

D : A x A — Cis the decoherence functional defined with :

o Hermiticity : Vo, 8 € A, D(a, 8) = D(B, a)*
@ Linearity :
Va,B,6 € A/BN§ =3, D(a, fUS) = D(e, B) + D(v, 6)

@ Normalisation : D(Q2,Q) =1
e Strong positivity : for any {a;} finite collection in 2 :
Mj; = D(cj, «j) has non-negative eigenvalues

45



Extension of the quantum measure

Ja, €A, anB=a/p(aup) # pla)+ u(b)
plaUpud) = plaUf)+p(aUd) +pu(BUd) — p(a) — u(B) — u(d)

GNS Construction = Quantum vector measure ,, : A — H.

Va,B€A,anp=a/ulaUp) = u(a)+ uB)

PHYSICAL REQUIREMENTS OF THE DYNAMICS : X Bell Causality ?

16



Physical requirement on QSG

v Internal temporality
Build into our definition of the growth process

v Discrete general covariance
= ‘C;w >= \C‘f, > whenever ¢} ~ ¢

o Bell causality : 777

v Markov sum rule

leih >= O(ch = o)l > & eyl(cl) = Uy evl(enh)

ueyi(en) = n(Jewi(h)) = > el ail))—zo = ah)ler >
()

47



Extension of complex percolation CP

Complex percolation is a natural quantum generalisation of
transitive percolation in which real probabilities are replaced by
complex amplitudes.

P(ci) = Wptq(a)-R — A(cl)

Lemma : The quantum vector measure of complex percolation is
not of bounded variation when the parameter p is not real.

48



Quantum sequential growth

The construction of a Hilbert space from the event algebra 2 and
the decoherence functional D implies that the quantum measure is
equivalent to a Hilbert space valued measure which is additive,
unlike the quantum measure :

Vector pre-measure 1, : A — B/

n(U ) Zmav

n=1

Vector measure n,, : & — B/

ﬁ(U ) Zmav)

n=1

49



Quantum sequential growth

Quantum Measure Theory is a formulation of quantum theory
based on the path integral.

Systems described by a quantum measure space (2,2, u).

Q : sample space of histories vy or spacetime configurations.

2 . event algebra or set of proposition about the system.

14 : quantum pre-measure given by the path integral, p : 2l — R™.
Ja,BeA,anp=0a/ulaVp) # pu(a)+ u(B)

waUBUb) = p(aUp)+ p(aUd) + u(BUd) — pu(er) — u(B) — p(d)

To make predictions about infinite-time events
— extension of the quantum pre-measure to a o-algebra.



Construction of the inner product vector space

(Hlv +, <'a >1)

H1 = set of all complex-valued functions on 2 which are non-zero
only on a finite number of events.

Vu,ve Hi,a e, (u+v)(a) = u(a) + v(a)

Vue Hi,AeC, (A u)(a)=Au(w)

Yu,v € Hi, uvl_zz (a, B)

aed ge

Problem : The inner product is degenerate



Construction of the Hilbert space of histories

(H27 +, <'a >2)

{up} ~{vn} & I|T l|un — vnll1 =0

7‘[257{1/N

~ equivalence class of a Cauchy sequence {u,} is denoted by [up]

Viup], [va] € Hi,a € A, [un] + [va] = [un + Vi
V{un] € Hi,A € C, X-[up] = [Auy]

Vunl, [va] € Hi, {([un],[va])2 = Ilmoo<u,,,v,,)1



Quantum vector measure

fu(@) = [xa] € H with the indicator xa () = { (1) i g -

If H=C", and ;Lg,i) : 2 — C, for i =1,..., n are the components of
Ly in an orthonormal basis :

ty is of bounded variation & ,ug) is of bounded variation



Conclusion

Sorkin's slogan

ORDER + NUMBER = GEOMETRY

CST dynamics is given by (2,2, u).
B Extension of measure for classical sequential growth.
B Condition on extension of measure for complex sequential growth.
B Definition of quantum vector measure.
[0 How to get Bell causality in quantum sequential growth ?

[0 What are conditions for extension in quantum sequential growth ?
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