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Taketani’s ”Three-Stage Theory”

1 Phenomenological stage
A substance presents itself, as it is, in a group of phenomena
Ex : Resonance of hadrons

2 Substantialistic stage
Investigation of the structure of the substance, distinction
from the phenomena
Ex : Discovery of quarks

3 Essentialistic stage
Dynamics is understood : interactions and laws of motion are
clarified
Ex : Formulation of QCD

Quantum gravity needs to skip the first stage.
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Causal Sets Theory

Partially ordered set (M,≺)

∀x , y , z ∈ M,


x ≺ x (Reflexivity)
x ≺ y and y ≺ x =⇒ x = y (Acyclicity)
x ≺ y and y ≺ z =⇒ x ≺ z (Transitivity)
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Causal Sets Theory

Causal set (c ,≺)

(c ,≺) is a partially ordered set
∀x , y ∈ c , |{z ∈ c/x ≺ z ≺ y}| < ∞
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Hawking–King–McCarthy–Malament-Levichev Theorem

HKMML theorem :

Let (M1, g1) and (M2, g2) be d-dimensional Lorentzian manifolds
with d > 2 such that the chronological (or timelike) past and
future of each point in space-time is unique.

If there exists a causal bijection between (M1, g1) and (M2, g2).

( If ∃f : (M1,≺1) → (M2,≺2)| ∀x , y ∈ M1, x ≺1 y ⇔ f (x) ≺2 f (y))

Then (M1, g1) and (M2, g2) are conformally isometric.

This means that the causal structure determine not just one
space-time, but the full conformal equivalence class of it.
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Volume element information

If we know only (cN ,≺), with cN a causal set of N elements, we
cannot recover a volume of space-time out of it.

We need the information contained in ρ (or ε) such that :

N

ρ
=

∫
V

√
det g ddx .

Sorkin’s slogan

Causal order︸ ︷︷ ︸
Proto−causality

+Spacetime Volume︸ ︷︷ ︸
Number

= Geometry
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Formalism

A causal set could be represented by a Hasse diagram.

c ≺ b ≺ a

{b, a} is a link or a
2-chain

{c , b, a} is a 3-chain

{d , a} is a 2-antichain

Past(a) is the set of all
elements e such that
e ≺ a (the green set)

This is a Past-finite
causal set c :
∀e ∈ c , |Past(e)| < ∞.
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(c ,≺) + ε ↔ (M, g)

Faithful embedding map Φ : c → (M, g)

x ≺c y ⇔ Φ(x) ≺M Φ(y)

Embedded points are distributed uniformly with unit density.

The characteristic length over which the continuous geometry
varies ≫ mean spacing between embedded points

Poissonian selection of random positions (M, g) → c

The probability of finding n elements in a spacetime region of
volume V is given by :

PV (n) =
(ρV )ne−ρV

n!
.

⟨N⟩ = ρV

∆N =
√
ρV
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Fundamental conjecture

If a causal set c could have arisen from a sprinkling process into
(M, g) ”with relatively high probability” :

(c ,≺) + ε ≃ (M, g)

(
⇔ (c,≺) + ε

Sprinkling
↼−−−−−−−−−−−−⇁
Embedding

(M, g)

)

The Hauptvermutung of CST :

(c ,≺) + ε ≃ (M, g) & (c,≺) + ε ≃ (M′, g ′)

=⇒ (M, g) ≃ (M′, g ′)

then (M, g) and (M′, g ′) differ only at scale smaller than ρ.
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Quantum partition function

We interpret Z =
∫
Dge iS[g ] as ZΩ ≡

∑
c∈Ω e i

S(c)
ℏ where Ω is the

space of all past-finite causal set that we need to construct.

The standard action for causal set is the Benincasa-Dowker action
defined as :

S(c in) =
4√
6

[
n − N

(n,i)
0 + 9N

(n,i)
1 − 16N

(n,i)
2 + 8N

(n,i)
3

]
.

Where N
(n,i)
k is the total number of k-element order interval in

the causal set c in. It gives the Einstein-Hilbert action in the
continuum limit.
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Sequential growth
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Sequential growth

As n → ∞, this growth process generates the sample space Ω of
countable labelled past finite causal sets.
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Sequential growth

Physical requirements of the dynamics :

Markov sum rule

Internal temporality

Discrete general covariance

Bell causality
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Bell Causality

α(c4 → c15 )

α(c4 → c25 )
=

α(c2 → c13 )

α(c2 → c23 )
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Causal Sets Theory

The continuum may be a mathematical construct which
approximates an underlying physical discreteness.

(M, g)
Embedding
↼−−−−−−−−−−−−⇁
Sprinkling

(c ,≺) + ε

Causal set approach :

✓ cures divergences in QFT.

✓ cures curvature singularity in GR.

✓ cures infinite entanglement entropy of black holes.

✓ measures metric at sub-Planckian scale.

✓ is compatible with Lorentz invariance.

✓ predicts the right magnitude of Λ.

? could give fruitful formulation of quantum fields dynamics.

? could solve the Hard Problem of Consciousness as a birth
process happening in the brain.
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Thank you for your attention
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Additional slides
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General measure space

Let Ω be a non-empty set. A ⊆ P(Ω) is an algebra if :

(i) Ω ∈ A
(ii) A ∈ A =⇒ Ac ∈ A
(iii) A1,A2, ...,An ∈ A =⇒

⋃n
k=1 Ak ∈ A

A is closed under finite unions

A is a σ-algebra if is also closed under countable unions.
A ∈ A is a measurable set.
(Ω,A) is a measurable space.
A measure on a measurable space is a map satisfying :

(i) µ(∅) = 0
(ii) A1, ...,An ∈ A pairwise disjoint =⇒ µ(

⋃n
k=1 Ak) =

∑n
k=1 µ(Ak)

(Ω,A, µ) is a measure space → gives the CST dynamics.
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CHK theorem

Caratheodary-Hahn-Kluvnek (CHK) theorem

If µ is bounded weakly countably additive vector measure over A :
µ is strongly additive ⇔∃! countably additive extension of µ to SA

bounded

supx∗{supπ
∑
αi∈π

||x∗(µ(αi ))||; x∗ ∈ H∗, ||x∗|| ≤ 1} < ∞

where the second supremum is taken over all partitions π of Ω

weakly countably additive
For every x∗ ∈ H∗, x∗(µ) countably additive.

⇔ x∗
(
µ
(⋃

i

αi

))
=
∑
i

x∗(µ(αi ))

for infinite sequence {αn} of pairwise disjoint element of A
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CHK theorem

Caratheodary-Hahn-Kluvnek (CHK) theorem

If µ is bounded weakly countably additive vector measure over A :
µ is strongly additive ⇔∃! countably additive extension of µ to SA

vector measure

strongly additive

||
∞∑
n=1

µ(αn)|| < ∞

for every sequence {αn} of pairwise disjoint element of A
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CHK theorem simplified

Caratheodary-Hahn-Kluvnek (CHK) theorem

If µ is bounded weakly countably additive vector measure over A :
µ is strongly additive ⇔∃! countably additive extension of µ to SA

Variation of µ, ∀α ∈ A, where π is a finite partition of α :

|µ|(α) ≡ supπ
∑
αi∈π

||µ(αi )||

Measure µ is of bounded variation if |µ|(Ω) < ∞

Theorem : µ of bounded variation =⇒ µ strongly additive
Theorem : µ strongly additive =⇒ µ bounded

Simplified CHK theorem

If µ is a weakly countably additive vector measure over A :
µ of bounded variation ⇒∃! countably additive extension to SA
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Need for extension

cylinder set : cyl(c in) ≡ {c ∈ Ω|c|n = c in} =
⋃

j(i) cyl(c
j(i)
n+1) ⊂ Ω

Nesting property for m > n :

cyl(c im) ∩ cyl(c jn) ̸= 0 =⇒ cyl(c im) ⊂ cyl(c jn)

cyl(c in) ⊂ Ω. A is generated from the cylinder sets via finite
unions, intersections and set differences.

µ(c in) ≡ µ(cyl(c in))

The event algebra A does not suffice to be able to define covariant
observables like the originary event : αorig =

(⋃
n>1

⋃
i∈In

cyl(c in)
)c

.

=⇒ One needs to include countable set operations on A.

Covariant events ∈ SA/ ∼

c ∼ c ′ ⇔ c, c ′ are order-isomorphic to each other
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Transitive percolation

Generate a random causal set by the following algorithm :

1 Start with n elements labeled 0, 1, 2, · · ·, n − 1
(n = ∞ not excluded.)

2 With a fixed probability p, introduce a relation between every
pair of points labeled i and j , where i < j .

3 Form the transitive closure of these relations (e.g. if 2 ≺ 5
and 5 ≺ 8 then enforce that 2 ≺ 8.)

The transition probability αn from c in to a specified child c
j(i)
n+1 :

α
(S)
n = pm(1− p)n−ϖ

m = number of maximal elements in the past S of the new element
ϖ = size of the past S of the new element

Physical requirements of the dynamics : ✓
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Physical requirement for transitive percolation

✓ Internal temporality
Build into our definition of the growth process

✓ Discrete general covariance
Net probability of a given c in in “manifestly covariant form” is

P(c in) = WpLq(
n
2)−R where L is the number of links in c in, R the

number of relations, and W the number of (natural) labelings of c in.

✓ Bell causality
Consider two different children, one with (m, ϖ) = (m1, ϖ1) and

the other with (m, ϖ) = (m2, ϖ2)

α
(m1,ϖ1)
n

α
(m2,ϖ2)
n

=
α
(m1,ϖ1)
n′

α
(m2,ϖ2)
n′

⇔ pm1qn−ϖ1

pm2qn−ϖ2
=

pm1qn
′−ϖ1

pm2qn′−ϖ2

where n′ ≤ n is the cardinality of the union of the precursor sets of

the two transitions.

✓ Markov sum rule
Trivial in a well-defined probabilistic procedure.
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General transition probability

Parameters of the growth = qn = probabilities to add a completely
disconnected element at stage n.

α
(S)
n = α

(m,ϖ)
n =

m∑
k=0

(−1)k
(
m

k

)
qn

qϖ−k
=

∑ϖ
l=m

(
ϖ−m
ϖ−l

)
tl∑n

j=0

(n
j

)
tj

m = number of maximal elements in the past S of the new element
ϖ = size of the past S of the new element

Alternative parameters : tn =
∑n

k=0(−1)n−k
(n
k

)
1
qk
.

Physical requirements of the dynamics : ✓
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Physical requirement for general transition probability

✓ Internal temporality
Build into our definition of the growth process

✓ Discrete general covariance
Probability of a labeled causal set c̃ in : P(c̃ in) =

∏N−1
i=0 α(i , ϖi ,mi )

This is a product over all elements x ∈ c in of poset invariant quantities

that depends only on the structure of past(x).

✓ Bell causality

α
(m1,ϖ1)
n

α
(m2,ϖ2)
n

=
α
(m1,ϖ1)
n′

α
(m2,ϖ2)
n′

⇔

∑m1
k=0(−1)k

(
m1
k

)
qn

qϖ1−k∑m2
k=0(−1)k

(
m2
k

)
qn

qϖ2−k

=

∑m1
k=0(−1)k

(
m1
k

) qn′
qϖ1−k∑m2

k=0(−1)k
(
m2
k

) qn′
qϖ2−k

The ratios depends only on precursor set structure.

✓ Markov sum rule
Impose a constraint :

N−1∑
i=0

α(i , ϖi ,mi ) = 1 ⇔
∑
S

∑
l

tl

(
|S | −m(S)

l −m(S)

)
=
∑
j

tj

(
n

j

)

⇔ ∀l ,
∑
S

(
|S | −m(S)

l −m(S)

)
=

(
n

l

)
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Corresponding measure space

The dynamics is a specification of the measure over A.

µ(cyl(c in)) ≡ P(c in) =
n∏

i=1

αi

µ : A → [0, 1], µ(Ω) = µ(cyl(c11 )) = 1

∀α ∈ A, there exists a smallest n < ∞ and a subset
S ⊂ {1, 2, ..., |Ωn|} such that α =

⋃
k∈S cyl(c

k
n ).

µ(α) =
∑
k∈S

P(ckn )

µ scalar real measure =⇒ µ extends to SA.
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Entropy catastrophe : KR posets in CSG

Lemma (Brightwell, Dowker, Garcia, Henson, Sorkin) :
In the CSG dynamics with tk ̸= 0 for some k > 1, a causet
containing an infinite level almost surely does not occur.

∞∑
n=|S |+1

α
(S)
n =

ϖ∑
l=m

(
ϖ −m

ϖ − l

)
tl

∞∑
n=|S |+1

1∑n
j=0

(n
j

)
tj

< ∞
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Straightforward generalisation

Straightforward generalisation of classical sequential growth, the
transition amplitudes are :

A
(S)
n = A

(m,ϖ)
n =

m∑
k=0

(−1)k
(
m

k

)
qn

qϖ−k
=

∑ϖ
l=m

(
ϖ−m
ϖ−l

)
tl∑n

j=0

(n
j

)
tj

with now qn, tn ∈ C.

The measure of cyl(c in) ∈ A yields :

|c in⟩ ≡ µ(cyl(c in)) ∝
∏

m in branch

A(cm → cm+1) ∈ C

The product is over transition along the nodes from c11 to c in.

Physical requirements of the dynamics : ✓
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Physical requirement on CSG

✓ Internal temporality
Build into our definition of the growth process

✓ Discrete general covariance
=⇒ |c in >= |c jn > whenever c in ∼ c jn

✓ Bell causality :

A
(m1,ϖ1)
n

A
(m2,ϖ2)
n

=
A

(m1,ϖ1)
n′

A
(m2,ϖ2)
n′

⇔

∑m1
k=0(−1)k

(
m1
k

)
1

qϖ1−k∑m2
k=0(−1)k

(
m2
k

)
1

qϖ2−k

=

∑m1
k=0(−1)k

(
m1
k

)
1

qϖ1−k∑m2
k=0(−1)k

(
m2
k

)
1

qϖ2−k

✓ Markov sum rule

|c j(i)n+1 >= Ô(c jn → c
j(i)
n+1)|c

i
n > & cyl(c in) =

⋃
j(i)

cyl(c
j(i)
n+1)

µ(cyl(c in)) = µ
(⋃

j(i)

cyl(c
j(i)
n+1)

)
=
∑
j(i)

µ(cyl(c
j(i)
n+1)) =

∑
j(i)

Ô(c jn → c
j(i)
n+1)|c

i
n >

=⇒
∑
j(i)

Ô(c jn → c
j(i)
n+1) = 1
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CHK extension theorem for complex measure space

Simplified CHK theorem

If µ is a weakly countably additive vector measure over A :
µ of bounded variation ⇒∃! countably additive extension to SA

Define ζ in ≥ 0 such as
∑

j(i) |A(c in → c
j(i)
n+1)| = 1+ ζ in ≥ 1 we have :

ζmax
n ≡ max

c in∈Ωn

ζ in
!
=

∑n
k=0

(n
k

)
|tk |

|
∑n

k=0

(n
k

)
tk |

− 1
!
= ζan

ζmin
n ≡ min

c in∈Ωn

ζ in
!
=

n∑
ϖ=1

|
∑ϖ−1

k=1

(
ϖ−1
k−1

)
tk |

|
∑n

k=0

(n
k

)
tk |

+
|t0|

|
∑n

k=0

(n
k

)
tk |

− 1
!
= ζcn

Theorem (Surya, Zalel) :
µ is of bounded variation if

∑∞
n=1 ζ

max
n converges.

µ is not of bounded variation if
∑∞

n=1 ζ
min
n diverges.
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Entropy catastrophe : KR posets in CSG

In complex sequential growth :

∞∑
n=1

ζmax
n < ∞ =⇒

∞∑
n=|S |+1

α
(S)
n < ∞

Personal work in progress.
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Quantum sequential growth

Event = set of histories : E = {γ1, γ2, ...}

µ(E ) = µ(γ1)+µ(γ2)+...+I (γ1, γ2)+I (γ1, γ3)+I (γ2, γ3)+... = D(E ,E )

I (x , y) = D(x , y) + D(y , x) are interferences terms.

D : A× A → C is the decoherence functional defined with :

Hermiticity : ∀α, β ∈ A,D(α, β) = D(β, α)∗

Linearity :
∀α, β, δ ∈ A/β ∩ δ = ∅,D(α, β ∪ δ) = D(α, β) + D(α, δ)

Normalisation : D(Ω,Ω) = 1

Strong positivity : for any {αi} finite collection in A :

Mij = D(αi , αj) has non-negative eigenvalues
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Extension of the quantum measure

∃α, β ∈ A, α ∩ β = ∅/µ(α ∪ β) ̸= µ(α) + µ(β)

µ(α∪β∪ δ) = µ(α∪β)+µ(α∪ δ)+µ(β∪ δ)−µ(α)−µ(β)−µ(δ)

GNS Construction =⇒ Quantum vector measure µv : A → H.

∀α, β ∈ A, α ∩ β = ∅/µ(α ∪ β) = µ(α) + µ(β)

Physical requirements of the dynamics : ✘ Bell Causality ?
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Physical requirement on QSG

✓ Internal temporality
Build into our definition of the growth process

✓ Discrete general covariance
=⇒ |c in >= |c jn > whenever c in ∼ c jn

Bell causality : ???

✓ Markov sum rule

|c j(i)n+1 >= Ô(c jn → c
j(i)
n+1)|c

i
n > & cyl(c in) =

⋃
j(i) cyl(c

j(i)
n+1)

µ(cyl(c in)) = µ
(⋃

j(i)

cyl(c
j(i)
n+1)

)
=
∑
j(i)

µ(cyl(c
j(i)
n+1)) =

∑
j(i)

Ô(c jn → c
j(i)
n+1)|c

i
n >

=⇒
∑
j(i)

Ô(c jn → c
j(i)
n+1) = 1
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Extension of complex percolation CP

Complex percolation is a natural quantum generalisation of
transitive percolation in which real probabilities are replaced by
complex amplitudes.

P(c in) = WpLq(
n
2)−R → A(c in)

Lemma : The quantum vector measure of complex percolation is
not of bounded variation when the parameter p is not real.
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Quantum sequential growth

The construction of a Hilbert space from the event algebra A and
the decoherence functional D implies that the quantum measure is
equivalent to a Hilbert space valued measure which is additive,
unlike the quantum measure :

Vector pre-measure ηv : A → B/

ηv

( N⋃
n=1

αn

)
=

N∑
n=1

ηv (αv )

Vector measure ηv : S → B/

η̄v

( ∞⋃
n=1

αn

)
=

∞∑
n=1

η̄v (αv )
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Quantum sequential growth

Quantum Measure Theory is a formulation of quantum theory
based on the path integral.

Systems described by a quantum measure space (Ω,A, µ).

Ω : sample space of histories γ or spacetime configurations.
A : event algebra or set of proposition about the system.
µ : quantum pre-measure given by the path integral, µ : A → R+.

∃α, β ∈ A, α ∩ β = ∅/µ(α ∪ β) ̸= µ(α) + µ(β)

µ(α ∪ β ∪ δ) = µ(α ∪ β) + µ(α ∪ δ) + µ(β ∪ δ)− µ(α)− µ(β)− µ(δ)

To make predictions about infinite-time events
=⇒ extension of the quantum pre-measure to a σ-algebra.
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Construction of the inner product vector space
(H1,+, ·, ⟨·, ·⟩1)

H1 ≡ set of all complex-valued functions on A which are non-zero
only on a finite number of events.

∀u, v ∈ H1, α ∈ A, (u + v)(α) ≡ u(α) + v(α)

∀u ∈ H1, λ ∈ C, (λ · u)(α) ≡ λu(α)

∀u, v ∈ H1, ⟨u, v⟩1 ≡
∑
α∈A

∑
β∈A

u∗((α)v(β)D(α, β)

Problem : The inner product is degenerate
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Construction of the Hilbert space of histories
(H2,+, ·, ⟨·, ·⟩2)

{un} ∼ {vn} ⇔ lim
n→+∞

||un − vn||1 = 0

H2 ≡ H1/ ∼

∼ equivalence class of a Cauchy sequence {un} is denoted by [un]

∀[un], [vn] ∈ H1, α ∈ A, [un] + [vn] ≡ [un + vn]

∀[un] ∈ H1, λ ∈ C, λ · [un] ≡ [λun]

∀[un], [vn] ∈ H1, ⟨[un], [vn]⟩2 ≡ lim
n→+∞

⟨un, vn⟩1
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Quantum vector measure

µv (α) ≡ [χα] ∈ H with the indicator χα(β) =

{
1 if β = α,
0 if β ̸= α.

If H = Cn, and µ
(i)
v : A → C, for i = 1,..., n are the components of

µv in an orthonormal basis :

µv is of bounded variation ⇔ µ
(i)
v is of bounded variation

⟨µv (α), µv (β)⟩ = D(α, β) ⟨µ̄v (α), µ̄v (β)⟩ = D̄(α, β)

D̄ : SA ×SA → C D̄|A = D
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Conclusion

Sorkin’s slogan

ORDER + NUMBER = GEOMETRY

CST dynamics is given by (Ω,A, µ).

■ Extension of measure for classical sequential growth.

■ Condition on extension of measure for complex sequential growth.

■ Definition of quantum vector measure.

□ How to get Bell causality in quantum sequential growth ?

□ What are conditions for extension in quantum sequential growth ?
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