

Electronic structure of the metal-to-insulator transition in VO2: the chicken-and-egg dilemma of condensed matter

Emma David, Daisuke Shiga, Amitayush Jha-Thakur, Maximilian Thees, Pedro Henrique Rezende Gonçalves, Alexandre Antezak, Xianglin Cheng, Tatsuhiko Kanda, Taehyun Kim, Emmanouil Frantzeskakis, Franck Fortuna, Hiroshi Kumigashira, Andres Santander-Syro

A nice research team = nice physics

Andres Santander

Franck Fortuna

Emmanouil Frantzeskakis

Pedro Rezende

Amitayush Jha Thakur

Emma David

Alexandre Antezak

Introducing: VO₂

According to theory: correlationasissted Peierls transition

« VO2 is not a conventional Mott insulator, [...] the formation of dynamical V-V singlet pairs due to strong Coulomb correlations is necessary to trigger the opening of a Peierls gap » S. Biermann *et al.*, PRL (2005)

Introducing: VO₂

According to theory: correlationasissted Peierls transition

« VO2 is not a conventional Mott insulator, [...] the formation of dynamical V-V singlet pairs due to strong Coulomb correlations is necessary to trigger the opening of a Peierls gap » S. Biermann *et al.*, PRL (2005)

4

Angle Resolved Photoemission Spectroscopy

Temperature-dependent electronic structure

Temperature-dependent electronic structure

Metallic phase in different polarizations 310 K, LH 310 K. LV 0.0 E_⊢ (eV) -0.2 -0.4 0.6 -0.8 0.0 -0.8 -0.4 0.0 -0.4 0.4 0.4 k (Å⁻¹) k (Å⁻¹) Theoretical band structure at the Fermi level: E_F _ .

Summary

 \rightarrow In the metallic state, we find that the d_{\parallel} and π^* orbitals coexist in the conduction band

 \rightarrow The temperature-dependent data shows different states between the metallic and insulating phases, as well as a gradual transfer of spectral weight between those states during the transition, in accordance with the electronic hysteresis

Thank you for your attention!

Our collaborators

 \rightarrow We worked with thin films of (001) oriented 10 nm thick VO₂ deposited on a Nb:TiO₂ substrate \rightarrow Samples were made by PLD (Pulsed Laser Deposition) by Hiroshi Kumigashira's group

Electronic structure in the metallic phase

 \rightarrow Two electron-like pockets around Γ , the flower-like shape matches with calculations

- \rightarrow Matrix elements play a great role
- \rightarrow The electronic structure is in accordance with published data