

Morphogenesis and ultrastructure of condensed DNA toroids analysed by cryo-TEM

Kahina VERTCHIK^{1,2}

¹ JEOL Europe (SAS), 78290 Croissy sur Seine, France ² Université Paris-Saclay, CNRS,
Laboratoire de Physique des Solides,
91405, Orsay, France

Observing biological samples with nm resolution ? proteins, viruses, DNA ...

- composed of H2O, C, and low atomic nb atoms
- Systems in solution = do not resist to high vacuum

Observing biological samples ? proteins, viruses, DNA ...

- composed of H2O, C, and low atomic nb atoms
- Systems in solution = do not resist to high vacuum

Far from the native state of the biological sample ...

Observing biological samples ? proteins, viruses, DNA ...

- composed of H2O, C, and low atomic nb atoms
- Systems in solution = do not resist to high vacuum

Freezing

Keep water in a solid state Native environment is preserved

Far from the native state of the biological sample ...

Vitrification To avoid crystallization

Classical freezing Not enough to preserve the sample

Cooling fast enough to avoid crystallization > 100000 °/sec with cryogenic fluids

J. Dubochet

Vitrification in the lab

EMBL, Univ. Lausanne

Vitrification

Cooling fast enough to avoid crystallization > 100000 °/sec with cryogenic fluids

Cryo-TEM

Electron microscopy

J. Dubochet EMBL, Univ. Lausanne

itrification in the lab

Vitrification technics to observe hydrated samples in their native

environment

Relationship between cooling speed and crystal ice size

DNA strand = semi-flexible polymer negatively charged

Coil

DNA strand in solution

Worm-like random coil conformation

A model system for physics and biology

Typical of semi-flexible polymer Different condensing agents, different molecules

Laemmli, 1975 Polylysine+ DNA

Gosule et al, 1976 Spermidine+ DNA

976 Marx et Ruben, 1986 DNA Spermidine+ DNA

Arscott et al, 1990 Hexamine Cobalt+ DNA

Garcia-Ramirez et al, 1994 Φ0 + DNA H5+ DNA

Clupeine+ DNA

A phenomenon vastly studied experimentally but no complete model exists yet ...

Understanding condensed states of DNA in biological systems

Bacteriophage T3/T7 Serwer et al, 2019

Double stranded ARN virus Huiskonen et al, 2019

Bacterial nucleoid Hobbot & Kellenberger, 1985

✓ DNA reservoir : T5 bacteriophage

✓ Condensing agent :

✓ DNA reservoir : T5 bacteriophage

✓ Condensing agent :

✓ DNA reservoir : T5 bacteriophage

✓ Condensing agent : Spermine 4+

✓ DNA reservoir : T5 bacteriophage

✓ Condensing agent : Spermine 4+

✓ DNA reservoir : T5 bacteriophage

✓ Condensing agent : Spermine 4+

Typical dimensions of our final objects

- External diameter ~ 250 nm
- Internal diameter ~ 90 nm
- Thickness ~ 200 nm
- 1 toroid ~ 30 DNA molecules

Linear length 40µm

Nano size condensate

Typical dimensions of our final objects

- External diameter ~ 250 nm
- Internal diameter ~ 90 nm
- Thickness ~ 200 nm
- **DNA toroids**

Highly condensed systems

- 0

Linear length 40µm

Nanometer size condensate

Microscopic structure : Local hexagonal order

lattice (d)

Microscopic structure : Local hexagonal order

DNA toroids = **Ordered systems** Made of ~30 DNA strands that spontaneously organized in an hexagonal lattice

Hexagonal lattice (*d*)

Existence of a disordered radial region

Segregation order / disorder

Correlations between DNA helices

Observation

Kornyshev et al, 2005; Leforestier & Livolant, 2009; Barberi et al, 2021

Molecular pathway and toroid morphogenesis

Coil spooling model

Marx & Ruben, 1984, 1985; Böttcher et al, 1998; Hud & Downing, 2001

Molecular pathway and toroid morphogenesis

Competition toroid / rod As ground state of DNA condensation

Sakaue & Yoshikawa, 2002 Hoang ... Podgornik & Maritan, 2015 Dey & Redding, 2017 Sun, ... & Nordenskiöld 2019

Loop nucleation

Toroid

Rod (hairpin)

Hoang ... Podgornik & Maritan, 2015

Sun, ... & Nordenskiöld, NAR 2019

Molecular pathway and toroid morphogenesis

Competition toroid / rod As ground state of DNA condensation

Sakaue & Yoshikawa, 2002 Hoang ... Podgornik & Maritan, 2015 Dey & Redding, 2017 Sun, ... & Nordenskiöld 2019

Loop nucleation

Toroid

Rod (hairpin)

Hoang ... Podgornik & Maritan, 2015

Time resolved experiments

Initial motivations

- How fast does the torus form?
- Can we image the first moments of the formation with our technical constraints? Can we see rods ?
- can we observe the nucleation of the first loops?

Time resolved experiments

Work in progress

Observation of rods at short time scale

Hoang ... Podgornik & Maritan, 2015

Conclusion and perspectives

- DNA toroids = Highly condensed object (linear lenght of 1 strand 40 µm (x30) -> 250 nm diameter toroid)
- Segregation order & disorder = optimization of helical correlations
- Morphogenesis = No simple winding of the molecule into a coil <-> Competition between nucleation and growth of toroidal / rod-shaped loops (hairpins)

Next steps :

Towards a comprehensive model of the DNA toroid ?

Understanding limiting factors of toroid growth -> phage concentration (DNA reservoir)

Monomolecular toroids vs giant toroids

- Understanding complex interplay between helical pitch and helical correlations
- **Tomography** study to model our objects

THANK YOU FOR YOUR ATTENTION !

kahina.vertchik@universite-paris-saclay.fr