Optomechanics for nanoparticle mass sensing

E

Université Paris Cité

CNIS

Louis Waquier

Laboratoire Matériaux et Phénomènes Quantiques MPQ

Weighing biological objects

Mass & Elasticity = Virus fingerprint

A mechanical resonator is a mass sensor

A mechanical resonator is a mass sensor

A coupling between light and mechanical motion

A coupling between light and mechanical motion

Optics

Whispering Gallery Mode (WGM)

Mechanics

Radial Breathing Mode (RBM)

Mechanical motion is **driven** and **detected** by light

Mechanical motion is **driven** and **detected** by light

Latex nanoparticle 300 nm nominal diameter, 15 fg

Latex nanoparticle 300 nm nominal diameter, 15 fg

What about the reproducibility ?

Measured mass seems overestimated by ~ 50%

Sources of **deviation**

Residual liquid meniscus

For Latex NP : Mechanical coupling between disk and nanoparticle vibrations

•

A coupling between the particle and the disk

E. Gil-Santos et al. Nature Nano 2020

A coupling between the particle and the disk

Mean contact radius observed by SEM

E. Gil-Santos et al. Nature Nano 2020

A coupling between the particle and the disk

E. Gil-Santos et al. Nature Nano 2020

• Dual optical and mechanical nanosensing with ultra-high sensitivity

- **Dual optical and mechanical** nanosensing with **ultra-high sensitivity**
- Multi mechanical mode sensing of nano-object in real-time

- **Dual optical and mechanical** nanosensing with **ultra-high sensitivity**
- Multi mechanical mode sensing of nano-object in real-time

 Analysis of signals provides the mass and elasticity of the nano-object

European Research Council Established by the European Commission

- **Dual optical and mechanical** nanosensing with **ultra-high sensitivity**
- Multi mechanical mode sensing of nano-object in real-time

- Analysis of signals provides the mass and elasticity of the nano-object
- Preparing the ground for **optomechanical virus sensing** with a dedicated instrument

To keep

- Dual optica sensing with
- Multi mech nano-object

ViruSco

Optical resonance shift for sensing

Multi mechanical mode sensing

Statistics on nanoparticle mass measurement

Sources of **dispersion**

- ±20% Mist: error on phase-frequency slope
 - ±20% Mechanical mode deformation induced by pedestal
- Particle density and dimension

S. Sbarra et al. Nano Letters 22(2),710-715,2022

Phase-Frequency characteristic of RBM2

Pedestal anisotropy deformed the mode profile

Sensitivity of several mechanical modes

Elasticity can be measured

