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An overview on perturbative field theory
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Field theory — What is it?
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Field theory — What is it?
Field theory

Anything that can be described (directly or roughly) with waves moving in a field!

Electromagnetic waves, heat waves, mechanical waves, high energy particles ...
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Field theory — What is it?

Field theory
Anything that can be described (directly or roughly) with waves moving in a field!

Electromagnetic waves, heat waves, mechanical waves, high energy particles ...

An outstanding example; Quantum Electrodynamics (QED)

Photons are obviously waves, but electrons are too! Let’'s make them interact:

- . 1 v
Lqep = P(il) — me)Y ~1 F*Fy,
—_—— ———

electrons+interactions Maxwell

QED is a QFT, which is classical field theory + special relativity + quantum mechanics.
v
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- . 1 v
Lqep = P(il) — me)Y ~1 F*Fy,
—_—— ———

electrons+interactions Maxwell

QED is a QFT, which is classical field theory + special relativity + quantum mechanics.
v

FIELD THEORIES ARE INFINITELY COMPLICATED PROBLEMS IF WAVES CAN INTERACT
WITH THEMSELVES AND/OR OTHER WAVES!
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Field theory — Quantum perturbative approach
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Field theory — Quantum perturbative approach

INFINITELY COMPLICATED PROBLEM —> INFINITE SUM OF “SIMPLE” PROBLEMS.
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Field theory — Quantum perturbative approach

INFINITELY COMPLICATED PROBLEM —> INFINITE SUM OF “SIMPLE” PROBLEMS.

The famous Feynman diagrams

A visual representation of the computations ... An example of QED diagram:

. ——— = electron
with
A~ = photon
Perturbative approach states that physical quantities (probability amplitude),
e.g. how an electron truly propagates, can be computed precisely like:

Summing all infinitely possible self-interaction loops gives the true X value ...
Hopefully, the more complicated a diagram is, the smaller it contributes!

X =
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Field theory — Quantum perturbative approach

INFINITELY COMPLICATED PROBLEM —> INFINITE SUM OF “SIMPLE” PROBLEMS.

The famous Feynman diagrams

A visual representation of the computations ... An example of QED diagram:

. ——— = electron
with
A~ = photon
Perturbative approach states that physical quantities (probability amplitude),
e.g. how an electron truly propagates, can be computed precisely like:

Summing all infinitely possible self-interaction loops gives the true X value ...
Hopefully, the more complicated a diagram is, the smaller it contributes!

X =

This is how we access very high precision prediction on quantities like:
“What is the probability of colliding particles A and B and get as an output particles X
and Y?" or “How much, very precisely, is the magnetic moment of an electron?”.
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Field theory — Statistical perturbative approach
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Field theory — Statistical perturbative approach

EXACTLY THE SAME FORMALISM IF FLUCTUATIONS ARE THERMAL OR STATISTICAL!
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Field theory — Statistical perturbative approach

EXACTLY THE SAME FORMALISM IF FLUCTUATIONS ARE THERMAL OR STATISTICAL!

An example — From Ising model to ¢* theory

Ising model is the simplest way to describe a magnet, i.e., =1 valued spins on a lattice.
It is exactly solvable in 1&2 dimensions, but what to do for a physical 3D magnet?

Seen from far enough, Ising model may look like a field theory:

A

HS) =T Y S8 —— L6) = 20u00°0— "o 67 2o

— smoothing
<%,j>

pfield theory
Ising discreet model

Then (IR) quantities can be computed perturbatively via diagramatic expansions too! :).

v
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Field theory — Statistical perturbative approach

EXACTLY THE SAME FORMALISM IF FLUCTUATIONS ARE THERMAL OR STATISTICAL!

An example — From Ising model to ¢* theory

Ising model is the simplest way to describe a magnet, i.e., =1 valued spins on a lattice.
It is exactly solvable in 1&2 dimensions, but what to do for a physical 3D magnet?

Seen from far enough, Ising model may look like a field theory:

2
HS) =T 3 5:S ——— L(8) = 20,60"0— g® — 2

— smoothing
<%,j>

¢4

pfield theory
Ising discreet model

Then (IR) quantities can be computed perturbatively via diagramatic expansions too! :).

v

In fact, ¢* model is an effective way to describe Ising model near its critical point ...

)
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Field theory — Divergences ...
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Field theory — Divergences ...

Sorry, | lied ... All graphs described above with at least one closed loop are = co... )

—
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Field theory — Divergences ...

Sorry, | lied ... All graphs described above with at least one closed loop are = co... )

Regularization & renormalization — taming infinities

Split divergent and convergent information, e.g.:

= lim <A + B)
e—0

(some crazy looking divergent diagram)

e Convergent part (B) is the renormalized probability amplitudes info!

o Divergent part (A) is the critical properties info!
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Field theory — Divergences ...

Sorry, | lied ... All graphs described above with at least one closed loop are = co...

Regularization & renormalization — taming infinities

Split divergent and convergent information, e.g.:

= lim (A + B)
e—0

(some crazy looking divergent diagram)

e Convergent part (B) is the renormalized probability amplitudes info!
o Divergent part (A) is the critical properties info!

Critical properties

These are violent features of a model like phases transitions!
Described by fixed points and quantified by critical exponents/anomalous dimensions.

Allow to answer questions like

“What happen to the magnetization of a magnet near its melting point?" or
“How does specific heat of a liquid diverges near one of its phase transition”,
as well as describing superconductivity, superfluidity ...
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An intuitive field theory — Fluctuating flat membranes

- = T 9ac
LPTHE - SU Simon Metayer



Fluctuating flat membranes — Physical motivation
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Fluctuating flat membranes — Physical motivation

d-dim extended objects embedded in a
larger D-dim space subject to small
quantum and/or thermal fluctuations.

Applications:

@ cond-mat: graphene, silicene,
phosphorene ...

@ bio: living cells surfaces (phospholipid
bilayers) Figure: Generic fluctuating membrane
@ hep: worldsheet, branes ...

Figure: Cell bi-layered membrane
Figure: Fluctuating graphene
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Fluctuating flat membranes — An intuitive field theory
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Fluctuating flat membranes — An intuitive field theory

Model parametrization

z

Fields parametrization:
e (%) = longitudinal displ. (P-wave) (phonon)
@ h(Z) = height displ. (S-wave) (flexuron)

o R(Z) = (& + @(Z), h(Z)) = coordinates
with Z = (z,y) and (%) = (ue(Z), uy (%))

= = = B
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Fluctuating flat membranes — An intuitive field theory

Model parametrization

Fields parametrization:

o #(Z) = longitudinal displ. (P-wave) (phonon)
@ h(Z) = height displ. (S-wave) (flexuron)

o R(Z) = (& + @(&), h(&)) = coordinates
with & = (z,y) and 4(Z) = (uz (%), uy (X))

l

Action
4/\ (uii)?

:/an: [% (AR + 7y (i) + R

with Uij R % [Biuj + 6‘ju¢ + O;h ajh]

)?

u;; = stress tensor ; fluctuations with respect to the flat configuration Bo(Z) = (&, 0)
A, 1 = coupling constants = Lamé coefficients

v
= i = =yt
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Fluctuating flat membranes — What to compute?
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Fluctuating flat membranes — What to compute?
What to compute?

o (), 1) = Lamé coefficients at a stable (scale invariant) fixed point.
@ 1) = elastic critical exponent = field anomalous dimension.
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Fluctuating flat membranes — What to compute?
What to compute?

o (), 1) = Lamé coefficients at a stable (scale invariant) fixed point.
@ 1) = elastic critical exponent = field anomalous dimension.

A papersheet subject to small deformations acquire anomalous rigidity and elasticity!
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Fluctuating flat membranes — What to compute?

What to compute?
o (), 1) = Lamé coefficients at a stable (scale invariant) fixed point.

@ 1) = elastic critical exponent = field anomalous dimension.

A papersheet subject to small deformations acquire anomalous rigidity and elasticity! )

All other mechanical quantities are accessible with A\, © and 7 only:

Quantities derived from X\ and p: All crit. exponents depend only on 7:
@ Young modulus @ bending/rigidity modulus
@ Poisson ratio (negative!) @ Young modulus
@ bulk modulus @ roughness exponent
@ s-wave sound velocity ... @ lower-crit dim ...
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Fluctuating flat membranes — Computations

We computed the Lamé coefficients (i, A) and the critical exponent 7 analytically with
high precision:

Flexuron propagator = ——— Phonon propagator = A~~~
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Fluctuating flat membranes — Computations

We computed the Lamé coefficients (i, A) and the critical exponent 7 analytically with
high precision:

Flexuron propagator = ——— Phonon propagator = A~~~

@ First order (hand computations) [Aronovitz & Lubensky, '88] (4 integrals)

21:_0_‘ and leuvavvv‘
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Fluctuating flat membranes — Computations

We computed the Lamé coefficients (i, A) and the critical exponent 7 analytically with
high precision:

Flexuron propagator = ——— Phonon propagator = A~~~

@ First order (hand computations) [Aronovitz & Lubensky, '88] (4 integrals)

21:_0_‘ and leuvawv‘

@ Second order (partially automated) [Coquand, Mouhanna, Teber, '20] (318 integrals)

SRS e - /&ﬂ
H2:-~<><>m+-<z>~m+fﬂ\
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Fluctuating flat membranes — Computations

@ Third order (highly automated) [Metayer, Mouhanna, Teber, '21]
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Fluctuating flat membranes — Computations
@ Third order (highly automated) [Metayer, Mouhanna, Teber, '21]

23:A+A+/@L+/@\+—-®—+/ﬁk+ﬁ\+@>\+
ﬂ+@+ﬂ+\v+\®’+/@\+ﬁ\+,@\+

)ﬂ+ﬁ+—®—+—@—+—@—+/_‘b\+/ﬁ\+/m\+
e A A A0 AR R
1 -v—<o>~+-ooo—~+ﬁ\ ,0Q+A+A+"o<x>~+ﬁ
~®~+—®—+—®-+-®-+A+,@\+R+ﬁ+

Q+ﬁ+ﬂ+/éﬁ\ (231939 integrals...)
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Fluctuating flat membranes — Results

Analytical results exact order by order in perturbation theory:
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Fluctuating flat membranes — Results

Analytical results exact order by order in perturbation theory:

N 4 " 96 2(1703808¢s — 3032351)
25 3125 48828125
L L 1 L
1st order  2nd order 3rd order
= —0.160 + 0.018 + 0.040 + ...
— 4 12 88 6(1847808(¢s — 2076601)
H=T 95 7 3125 48828125
—_ L 1 L
1st order  2nd order 3rd order
= 0.480 — 0.028 + 0.018 + ...
_ .24 144 4(1286928Cs — 568241)
TET 95 T 3125 146484375
[ | L 1 L
1st order 2nd order 3rd order

= 0.960 — 0.0461 — 0.027 + ...
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Fluctuating flat membranes — Results
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Fluctuating flat membranes — Results

This leads the fundamental numbers:

|/\ = —0.102

1 =0470 7 =0.888
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Fluctuating flat membranes — Results

This leads the fundamental numbers:

A=-0102 p=0470 7 =0.888
| |

From which we compute all desired property of the membrane, e.g.:

Ap(N + )
Bulk modulus = K = A + ¢ = 0.368 Young modulus = F = ——— = 0.825
A42p
Poisson ratio =v = = —0.121 P-wave modulus = M = )\ + 2p = 0.837
A+2p
2=

Anomalous roughness = ( = —5 = 0.556  Anomalous rigidity = n = 0.888 etc
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Fluctuating flat membranes — Results

This leads the fundamental numbers:

A=-0102 p=0470 7 =0.888
| |

From which we compute all desired property of the membrane, e.g.:

Ap(N + )
Bulk modulus = K = A + ¢ = 0.368 Young modulus = F = ——— = 0.825
A42p
Poisson ratio =v = = —0.121 P-wave modulus = M = )\ + 2p = 0.837
A+ 2p
2=

Anomalous roughness = ( = —5 = 0.556  Anomalous rigidity = n = 0.888 etc

These are the experimental results that would be obtained by averaging the mechanical
properties of a membrane over a large number of (fractal) configurations.
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Thank you for your attention :)
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