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Field theory – What is it?

Field theory

Anything that can be described (directly or roughly) with waves moving in a field!

Electromagnetic waves, heat waves, mechanical waves, high energy particles ...

An outstanding example; Quantum Electrodynamics (QED)

Photons are obviously waves, but electrons are too! Let’s make them interact:

LQED = ψ̄(i /D −me)ψ︸ ︷︷ ︸
electrons+interactions

−1

4
FµνFµν︸ ︷︷ ︸
Maxwell

QED is a QFT, which is classical field theory + special relativity + quantum mechanics.

Field theories are infinitely complicated problems if waves can interact
with themselves and/or other waves!
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Field theory – Quantum perturbative approach

Infinitely complicated problem → infinite sum of “simple” problems.

The famous Feynman diagrams

A visual representation of the computations ... An example of QED diagram:

� with

{� ≡ electron� ≡ photon

Perturbative approach states that physical quantities (probability amplitude),
e.g. how an electron truly propagates, can be computed precisely like:

X = � +� +� + ...

Summing all infinitely possible self-interaction loops gives the true X value ...
Hopefully, the more complicated a diagram is, the smaller it contributes!

This is how we access very high precision prediction on quantities like:
“What is the probability of colliding particles A and B and get as an output particles X
and Y?” or “How much, very precisely, is the magnetic moment of an electron?”.
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Field theory – Statistical perturbative approach

Exactly the same formalism if fluctuations are thermal or statistical!

An example – From Ising model to ϕ4 theory

Ising model is the simplest way to describe a magnet, i.e., ±1 valued spins on a lattice.
It is exactly solvable in 1&2 dimensions, but what to do for a physical 3D magnet?

Seen from far enough, Ising model may look like a field theory:

H(S) = −J
∑

<i,j>

SiSj︸ ︷︷ ︸
Ising discreet model

−−−−−→
smoothing

L(ϕ) = 1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λ

4!
ϕ4︸ ︷︷ ︸

ϕ4field theory

Then (IR) quantities can be computed perturbatively via diagramatic expansions too! :).

In fact, ϕ4 model is an effective way to describe Ising model near its critical point ...
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Field theory – Divergences ...

Sorry, I lied ... All graphs described above with at least one closed loop are = ∞...

Regularization & renormalization – taming infinities

Split divergent and convergent information, e.g.:

�
(some crazy looking divergent diagram)

= lim
ε→0

(
A

ε
+B

)

Convergent part (B) is the renormalized probability amplitudes info!

Divergent part (A) is the critical properties info!

Critical properties

These are violent features of a model like phases transitions!
Described by fixed points and quantified by critical exponents/anomalous dimensions.

Allow to answer questions like
“What happen to the magnetization of a magnet near its melting point?” or
“How does specific heat of a liquid diverges near one of its phase transition”,
as well as describing superconductivity, superfluidity ...
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An intuitive field theory – Fluctuating flat membranes
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Fluctuating flat membranes – Physical motivation
d-dim extended objects embedded in a
larger D-dim space subject to small
quantum and/or thermal fluctuations.

Applications:

cond-mat: graphene, silicene,
phosphorene ...

bio: living cells surfaces (phospholipid
bilayers)

hep: worldsheet, branes ...
Figure: Generic fluctuating membrane

Figure: Fluctuating graphene
Figure: Cell bi-layered membrane
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Fluctuating flat membranes – An intuitive field theory

Model parametrization

h

R⃗

uy
ux

z

y

x

Fields parametrization:

u⃗(x⃗) ≡ longitudinal displ. (P-wave) (phonon)

h(x⃗) ≡ height displ. (S-wave) (flexuron)

R⃗(x⃗) = (x⃗+ u⃗(x⃗), h(x⃗)) ≡ coordinates
with x⃗ = (x, y) and u⃗(x⃗) = (ux(x⃗), uy(x⃗))

Action

S[u⃗, h] =

∫
d2x

[
1

2
(∆h)2 +

µ

(4π)2
(uij)

2 +
λ

2(4π)2
(uii)

2

]
with uij ≈ 1

2
[∂iuj + ∂jui + ∂ih ∂jh]

uij ≡ stress tensor ; fluctuations with respect to the flat configuration R⃗0(x⃗) = (x⃗, 0)
λ, µ ≡ coupling constants ≡ Lamé coefficients
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Fluctuating flat membranes – What to compute?

What to compute?

(λ, µ) ≡ Lamé coefficients at a stable (scale invariant) fixed point.

η ≡ elastic critical exponent ≡ field anomalous dimension.

A papersheet subject to small deformations acquire anomalous rigidity and elasticity!

All other mechanical quantities are accessible with λ, µ and η only:

Quantities derived from λ and µ:

Young modulus

Poisson ratio (negative!)

bulk modulus

s-wave sound velocity ...

All crit. exponents depend only on η:

bending/rigidity modulus

Young modulus

roughness exponent

lower-crit dim ...
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Fluctuating flat membranes – Computations

We computed the Lamé coefficients (µ, λ) and the critical exponent η analytically with
high precision:

Flexuron propagator ≡ % Phonon propagator ≡ &
First order (hand computations) [Aronovitz & Lubensky, ’88] (4 integrals)

Σ1 = and Π1 =

Second order (partially automated) [Coquand, Mouhanna, Teber, ’20] (318 integrals)

Σ2 = + + + +

Π2 = + +
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Fluctuating flat membranes – Computations
Third order (highly automated) [Metayer, Mouhanna, Teber, ’21]

Σ3 = + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

Π3 = + + + + + + + +

+ + + + + + + +

+ + + (231939 integrals...)
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Fluctuating flat membranes – Results

Analytical results exact order by order in perturbation theory:

λ = − 4

25
1st order

+
56

3125
2nd order

− 2(1703808ζ3 − 3032351)

48828125
3rd order

+...

= −0.160 + 0.018 + 0.040 + ...

µ = +
12

25
1st order

− 88

3125
2nd order

+
6(1847808ζ3 − 2076601)

48828125
3rd order

+...

= 0.480− 0.028 + 0.018 + ...

η = +
24

25
1st order

− 144

3125
2nd order

− 4(1286928ζ3 − 568241)

146484375
3rd order

+...

= 0.960− 0.0461− 0.027 + ...
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Fluctuating flat membranes – Results

This leads the fundamental numbers:

λ = −0.102 µ = 0.470 η = 0.888

From which we compute all desired property of the membrane, e.g.:

Bulk modulus ≡ K = λ+ µ = 0.368 Young modulus ≡ E =
4µ(λ+ µ)

λ+ 2µ
= 0.825

Poisson ratio ≡ ν =
λ

λ+ 2µ
= −0.121 P-wave modulus ≡M = λ+ 2µ = 0.837

Anomalous roughness ≡ ζ =
2− η

2
= 0.556 Anomalous rigidity ≡ η = 0.888 etc

These are the experimental results that would be obtained by averaging the mechanical
properties of a membrane over a large number of (fractal) configurations.
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Thank you for your attention :).
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