Neutron detection to improve the neutrino energy resolution in oscillation experiments

Pierre Granger Neutrino group APC Novenber 2, 2022

APC - CNRS

The neutrino:

• exists in 3 flavours (+ 3 associated antineutrinos)

The neutrino:

- exists in 3 flavours (+ 3 associated antineutrinos)
- **·** interacts via **weak** interaction

The neutrino:

- exists in 3 flavours (+ 3 associated antineutrinos)
- **·** interacts via **weak** interaction
- **•** is extremely light

 $d\bullet s\bullet b\bullet$

We observe changes in the neutrinos flavour as they travel \rightarrow oscillations

Weak states:

States under which the neutrinos interact via weak interaction

$$
\bullet \ \nu_e, \ \nu_\mu, \ \nu_\tau
$$

Weak states:

- **States under which the** neutrinos interact via weak interaction
- \bullet ν_e , ν_μ , ν_τ

Mass states:

- **States under which the** neutrinos propagate
- Eigenstates of the free Hamiltonian
- \bullet ν_1, ν_2, ν_3

Relation:

- Each weak state is composed of a linear superposition of the mass states
- Parametrization with mixing angles θ_{ij}
- Oscillation inbetween the mass states during propagation (close $masses) \implies change in$ detected flavour 4

2-flavour osc. prob.: $\mathcal{P}(\nu_\alpha \rightarrow \nu_\beta) =$ sin² (2 θ) sin² $\left(\frac{\Delta m^2}{4}\right)$ 4 L $\frac{L}{E}$ where $\Delta m^2 = m_2^2 - m_1^2$.

Oscillations are driven by the L/E ratio

Neutrino oscillations open questions

- \bullet What are the precise values of the oscillation parameters? \rightarrow now entering an era of precision measurements
- Are oscillations the same for ν and $\bar{\nu}$ (driven by δ_{CP}) \rightarrow could partly explain the matter-antimatter asymetry in the universe
- $\ddot{}$ What is hierarchy of the neutrino masses (sign of $\Delta m^2_{31})$ \rightarrow could help understand how neutrinos acquire mass

 \rightarrow Necessity to improve number of events (larger detector masses) and E resolutions

Neutrinos interactions with matter:

 ν_{ℓ} + n $\rightarrow \ell^-$ + p (+ others) $\bar{\nu}_{\ell}$ + p $\rightarrow \ell$

 $\bar{\nu}_e$ + p \rightarrow ℓ^+ + n (+ others)

Neutrinos interactions with matter:

$$
\nu_{\ell} + \mathsf{n} \rightarrow \left| \ell^{-} + \mathsf{p} \right. \left(+ \text{ others} \right) \right| \qquad \qquad \bar{\nu}_{\ell} + \mathsf{p} \rightarrow \left| \ell \right|
$$

$$
\bar{\nu}_{\ell} + \mathsf{p} \rightarrow \boxed{\ell^+ + \mathsf{n} \ (\text{+ others})}
$$

Reconstruction of ${\sf E}_{\nu}$ from final state

Neutrinos interactions with matter:

$$
\nu_{\ell} + \mathsf{n} \rightarrow \left| \ell^{-} + \mathsf{p} \right. \left(+ \text{ others} \right) \right| \qquad \qquad \bar{\nu}_{\ell} + \mathsf{p} \rightarrow \left| \ell \right|
$$

$$
\bar{\nu}_{\ell} + \mathsf{p} \rightarrow \left| \ell^+ + \mathsf{n} \right. \left(+ \text{ others} \right)
$$

Reconstruction of ${\sf E}_{\nu}$ from final state

- ℓ^- and p detected
- $E_{\nu} = E_{\rho} + E_{\ell}$

Neutrinos interactions with matter:

$$
\nu_{\ell} + \mathsf{n} \rightarrow \boxed{\ell^{-} + \mathsf{p} \text{ (+ others)}}
$$
\n\nReconstruction of E_{ν} from final state\n\n
$$
\mathsf{E}_{\nu} = \mathsf{E}_{\mathsf{p}} + \mathsf{E}_{\ell}
$$
\n
$$
\mathsf{E}_{\nu} = \mathsf{E}_{\mathsf{p}} + \mathsf{E}_{\ell}
$$
\n
$$
\mathsf{E}_{\bar{\nu}} \simeq \frac{\mathsf{m}_{\mathsf{n}}^2 - \mathsf{m}_{\rho}^2 - \mathsf{m}_{\ell}^2 + 2\mathsf{m}_{\mathsf{p}} \mathsf{E}_{\ell}}{2(\mathsf{m}_{\mathsf{p}} - \mathsf{E}_{\ell} + \mathsf{p}_{\ell} \cos \theta_{\ell})}
$$
\n
$$
\nu
$$
\n
$$
\nu
$$
\n
$$
\nu
$$

6

Detecting neutrinos with a fine grained scintillating detector

Detector design:

- \bullet High interaction rates \rightarrow large detector with fiber readout in 3 direction
- \bullet High resolution events reconstruction \rightarrow **High granularity** (1 cm size cubes) $+$ Good electronics time resolution $(< 1$ ns)

FGD working principle: Ionization by charged particles \rightarrow Production of scintillation light \rightarrow Light collected by fibers and read out

How to detect neutrons with the a fine grained scintillating detector

How to leverage the high granularity to measure neutrons energy:

How to detect neutrons with the a fine grained scintillating detector

How to leverage the high granularity to measure neutrons energy:

• Neutrons interact sporadically (proton $recoil$) \rightarrow isolated clusters

How to detect neutrons with the a fine grained scintillating detector

How to leverage the high granularity to measure neutrons energy:

- Neutrons interact sporadically (proton $recoil$) \rightarrow isolated clusters
- Their energy can be determined using the time of flight and distance to production vertex

$$
\beta = \frac{\mathsf{L}}{\mathsf{c}(\mathsf{t}_2 - \mathsf{t}_1)} \quad \mathsf{E}_\mathsf{n} = \frac{\mathsf{m}_\mathsf{n}}{\sqrt{1 - \beta^2 \frac{1}{8}}}
$$

Neutron detection performances

$$
\beta = \frac{L}{c(t_2 - t_1)} \quad \mathsf{E}_n = \frac{m_n}{\sqrt{1 - \beta^2}}
$$

Energy resolution improves when:

- spatial resolution improves (increase granularity)
- time resolution improves (improve the electronics time response)
- the distance traveled by the neutron (lever arm) gets larger (apply a selection on the events)

The choices of the electronics and granularity impact the neutron energy resolution, and thus neutrino energy resolution: $E_{\nu} = E_{\mu} + E_n$

Using the neutron information

The momentum in the plane \perp neutrino beam (δp_T) can be measured

Allows to select $\bar{\nu} + H$ interactions that enable a better neutrino energy **reconstruction** w.r.t $\bar{\nu} + C$ (no nuclear effect)

$\bar{\nu}$ interaction on H:

- \bullet H nucleus = proton at rest
- $P_p + P_\nu = P_n + P_\mu \implies 0 = P_n^{\perp} + P_\mu^{\perp}$ $\implies \delta P_{\tau} = 0$

$\bar{\nu}$ interaction on C:

- \bullet C nucleus \rightarrow interaction with a proton in interaction with other nucleons
- $P_p + P_\nu = P_n + P_\mu \implies P_p^{\perp} = P_n^{\perp} + P_\mu^{\perp}$ $\implies \delta P_{\tau} \neq 0$

Comparing the resolution on the reconstructed neutrino energy:

- with the muon-only
	- information: ${\sf E}_{\bar{\nu}}^{\rm lep} = \frac{{\rm m}_{\rm n}^2 - {\rm m}_{\rm p}^2 - {\rm m}_{\mu}^2 + 2 {\rm m}_{\rm p} {\sf E}_{\mu}}{2({\rm m}_{\rm m} - {\sf E}_{\rm m} + {\rm n}_{\rm m} \cos\theta)}$ $2(m_{\rm p}$ −E $_{\mu}$ +p $_{\mu}$ cos θ_{μ})
- with the neutron information:
	- $\mathsf{E}_{\bar{\nu}}^{\mathsf{cal}} = \mathsf{E}_{\mu} + \mathsf{E}_{\mathsf{n}} \mathsf{m}_{\mathsf{p}}$ with
		- Neutron distance to vertex $L > 10$ cm
		- $\delta p_T < 40$ MeV

Being able to detect the neutrons and measure their energy improves E_{i} reconstruction!