

Gregory Horndeski, 'Horndeski Scalar Theory, Past, Present and Future'

Towards Precision Cosmology With Void-Lensing: I. How To Optimize Void-Lensing Measurements II. How To Interpret the Measurement (in Collab With R. Voivodic)

Renan Isquierdo Boschetti (Supervisors: Stephanie Escoffier and Eric Jullo)

How To Extract Information From Large Scale Structure?

Why Voids?

Why Weak Lensing?

Optimum Centering Void Finder

Comparison With Literature

OCVF

Hamaus et al (2014)

WL Voids

How To Optimize VL Measurement?

The Role of Bin Size

BGS 0.1 < z < 0.5

 r_p/R_v

Projected field

$$\delta_{2D}(r_{\perp} | R_{2D}, \Delta_{2D}) = \int dR_{3D} \frac{dn_{\nu}}{dR_{3D}} (R_{3D} | \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \,\delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \,\delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}) \int dr_{\parallel} \,\delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}) \int dr_{\parallel} \,\delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}) dx_{\perp} dx_{\parallel} d$$

3D field

$$\delta_{2D}(r_{\perp} | R_{2D}, \Delta_{2D}) = \int dR_{3D} \frac{dn_{\nu}}{dR_{3D}} (R_{3D} | \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} -$$

$$\delta_{2D}(r_{\perp} | M_{2D}) = \int d \ln R_{3D} \frac{dn_{\nu}}{d \ln R_{3D}} \int dx_{\perp} (1 + \xi(x_{\perp})) \int dr_{\parallel} \delta_{3D}(r_{\perp}, r_{\parallel} | \alpha, R_{3D})$$

$$= \int dr_{\parallel} \delta^{eff}(r_{\perp}, r_{\parallel} \mid \alpha, R_{3D})$$

$$\Rightarrow \Delta \Sigma(r_{\perp}) = \bar{\delta}_{2D}(< r_{\perp}) - \delta_{2D}(r_{\perp})$$

$$\delta_{2D}(r_{\perp} \mid R_{2D}, \Delta_{2D}) = \int dR_{3D} \frac{dn_{\nu}}{dR_{3D}} (R_{3D} \mid \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha \mid R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\perp} - x_{\perp} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\perp} - x_{\perp} \mid \alpha, R_{3D}, \Delta_{3D}) dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp} \mid \alpha$$

$$\delta_{2D}(r_{\perp} | M_{2D}) = \int d \ln R_{3D} \frac{dn_{\nu}}{d \ln R_{3D}} \int dx_{\perp} (1 + \xi(x_{\perp})) \int dr_{\parallel} \,\delta_{3D}(r_{\perp}, r_{\parallel} | \alpha, R_{3D})$$

$$\frac{dn_v}{d\ln R} = \frac{f(\sigma)}{V(R)} \frac{d\ln \sigma^{-1}}{d\ln R} , \text{ where}$$

$$\sigma^2(R) \equiv \int \frac{dk}{2\pi^2} k^2 P_{mm}^L(k) \left| \tilde{W}(k \mid R) \right|^2$$

$$\delta_{2D}(r_{\perp} | R_{2D}, \Delta_{2D}) = \int dR_{3D} \frac{dn_{\nu}}{dR_{3D}} (R_{3D} | \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}) dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} | \alpha, R_{3D}) dr_$$

$$\int dR_{3D} \frac{dn_{\nu}}{dR_{3D}} (R_{3D} | \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{3D}) \int dr_{\parallel} \rho_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D})$$

$$\delta_{2D}(r_{\perp} | R_{2D}, \Delta_{2D}) = \int dR_{3D} \frac{dn_{v}}{dR_{3D}} (R_{3D} | \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}) dx_{\perp} dx_{\parallel} d$$

$$\delta_{2D}(r_{\perp} | M_{2D}) = \int d \ln R_{3D} \frac{dn_{v}}{d \ln R_{3D}} \int d \ln R_{3D} \int d \ln R_$$

Preliminary Result

$$\delta_{2D}(r_{\perp} | R_{2D}, \Delta_{2D}) = \int dR_{3D} \frac{dn_{\nu}}{dR_{3D}} (R_{3D} | \Delta_{3D}) \int dx_{\perp} dx_{\parallel} d\alpha P(x_{\perp}, x_{\parallel}, \alpha | R_{3D}, R_{2D}, \Delta_{3D}, \Delta_{2D}) \int dr_{\parallel} \delta_{3D}(r_{\perp} - x_{\perp}, r_{\parallel} - x_{\parallel} | \alpha, R_{3D}, \Delta_{2D}) dx_{\parallel} dx_{\parallel}$$

$$\delta_{2D}(r_{\perp} | M_{2D}) = \int d \ln R_{3D} \frac{dn_{\nu}}{d \ln R_{3D}} \int dx_{\perp} (1 + \xi(x_{\perp})) \int dr_{\parallel} \delta_{3D}(r_{\perp}, r_{\parallel} | \alpha, R_{3D})$$

Conclusions and Prospects

- Our method is capable of measuring $\Delta\Sigma$ with high S/N
- Apply this method to real DESI data
- Promising results in relating 3D and 2D underdensities
- Open questions: (i) How much we can reconstruct from the DM field using 2D underdensities? (ii) Is the Void intrinsic alignment sensitive to cosmology, modifications to gravity or neutrinos?
- Future: Apply the pipe line to the real data and perform cosmological analysis for the first time

Dodelson and Schmidt (2021)

$$\begin{aligned} \theta^{i} &= \theta^{i}_{s} + \Delta \theta^{i} \\ \Delta \theta^{i}(\theta) &= \frac{2}{c^{2}} \int_{0}^{\chi} d\chi' \Phi_{,i} \left(\mathbf{x} \left(\theta, \chi' \right) \right) \chi' \left(1 \right) \\ &\equiv \frac{\partial \Delta \theta^{i}}{\partial \theta^{j}} = \frac{\partial^{2}}{\partial \theta^{i} \partial \theta^{j}} \phi_{\mathrm{L}}(\theta) = \frac{2}{c^{2}} \int_{0}^{\chi} d\chi' \Phi_{,ij} \left(\mathbf{x} \left(\theta, \chi' \right) \right) \chi' \left(1 \right) \\ A_{ij} &\equiv \frac{\partial \theta^{i}_{S}}{\partial \theta^{j}} = \left(\begin{array}{c} 1 - \kappa - \gamma_{1} & -\gamma_{2} \\ -\gamma_{2} & 1 - \kappa + \gamma_{1} \end{array} \right) \\ A_{ij} &= \delta_{ij} + \psi_{ij} \\ \hline \kappa &= \psi_{11} + \psi_{22} = \frac{2}{c^{2}} \int_{0}^{\chi} d\chi' \nabla^{2} \Phi \left(\mathbf{x} \left(\theta, \chi' \right) \right) \chi' \left(1 - \frac{\chi}{2} \right) \\ \gamma_{1} &= -\frac{\psi_{11} - \psi_{22}}{2} \\ \end{array}$$

