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The ATLAS Experiment at the Large Hadron Collider (LHC)
General purpose detector

• The ATLAS Experiment is one of the general
purpose detectors at the LHC

• Consists of a tracker, electromagnetic and
hadronic calorimeters and muon detectors

• Proton-proton collisions every 25ns (40MHz)
referred to as bunch crossings (BCs)

• Real-time event selection from 40MHz to store
events at 10kHz
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Liquid Argon Calorimeter
Energy reconstruction in the LAr calorimeter

• Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by electromagnetically
interacting particles

• Consisting of≈ 182 000 calorimeter cells
• Passing particles ionize the material

• Bipolar pulse shape with total length of up to 750 ns (30 BCs)
• Pulse is sampled and digitized at 40MHz

• Energy reconstruction is done real-time and used in triggering decision
• Using the digitized samples from the pulse
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The Phase-II Upgrade of the LHC
Upgrade of the ATLAS experiment
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• The High Luminosity LHC (HL-LHC) is an important milestone for particle physics
• Increase the luminosity to study rare processes
• Increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing (BC)

• The detectors will be upgraded to cope with the high collision rate at the HL-LHC
• In particular the ATLAS calorimeter readout electronics will be completely replaced
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Energy Reconstruction
Energy reconstruction in the LAr calorimeter

• Current energy reconstruction uses optimal filtering algorithm with maximum finder (OFMax)
• Using five samples around pulse shape peak is used in Phase-II studies
• Assuming perfect pulse shape

• High pileup leads to higher rate of overlapping pulse shapes
• Distorted bipolar shape→ significantly decreased performance of OFMax

• Energy is computed real-time at 40MHz
• Using specialized boards based on FPGAs
• For Phase-II one FPGA processes 384 channels
• Latency requirement of 125 ns

• Phase-II electronics with high-end FPGAs
• Increased computing capacity
• Improved online energy reconstruction using
machine learning based methods

• Constraints from running on FPGAs
• Latency, frequency and occupancy
• Small networks needed
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RNN Architecture
Timeseries processing

• Recurrent Neural Networks (RNNs) are
designed to process time series data

• RNNs consists of neural network layers that
process by combining new time input with
past processed state

• Vanilla RNN is the smallest RNN structure
• Long Short-Term Memory (LSTM) network for
efficiently handling past information

Vanilla LSTM
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RNNs for Energy Reconstruction
Using a many-to-one and many-to-many networks for energy reconstruction

• Use digitized samples as inputs for the
recurrent network

• Sliding window
• Full sequence split into overlapping
subsequences with a sliding window

• One energy prediction per subsequence
• Network receives limited amount of data from
the past

• Possible for Vanilla RNN and LSTM
• Single cell

• Use the LSTM cell to process all digitized
samples in one continuous chain instead of a
sliding window

• Full history of events available
• Possible only for LSTM
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Network Optimization
Find the smallest well performing network, example for sliding window LSTM

• Use standard deviation and 98% range to compare energy resolution
• Non-gaussian distribution of the energy resolution

• Optimization of the energy resolution while keeping the network size under control
• Vary the network parameters: internal dimension (units), sliding window size (timesteps)
• Network trained with simulated data of a single LAr calorimeter cell using the AREUS software
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RNN Performance
Resolution as a function of gap to previous energy deposit in BCs

• Vanilla 89 params, LSTM 496 params
• Clear performance decrease with
OFMax at low gap

• All RNNs perform better with
overlapping events
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Network Robustness
Against pileup (µ) for Vanilla RNN

• Resilience against varying pileup (simultaneous p-p collisions per BC)
• Train 276 models with different pileup rates, cross evaluate
• The networks show resilience against varying pileup
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Reconstructing Energy and Timing
• Time shift in pulse shape is also computed by OF (OFCB)
• This value is used when determining the quality of the pulse
• It could possibly also be used in discovering long-lived particles
• Adding timing computation to RNN adds only few extra parameters
• RNNs reconstruct the phase shift better than OF

OFCB LSTM RNN
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Reconstruction for the Full Detector

• LAr consists of barrel (EMB) and endcaps
(EMEC) which have 4 layers each

• Significantly different pulse shapes for
different parts of the detector

• Example of 10138 pulses in EMEC layer 3
• The color denotes the abs(ETA) value

• One NN training will not perform well for the
full detector, nor is 182k NNs feasible

• It is essential to find a way to reduce the
amount of NNs while keeping high accuracy
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Reconstruction for the Full Detector

• Use t-SNE for dimensionality reduction for LAr calibration pulses to acquire 2D representation
• DBSCAN unsupervised clustering to group LAr cells with different pulse shapes
• Able to distinguish real differences in pulse shape with good ETA separation
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Quantization Aware Training
Optimizing NNs for firmware

• FPGAs operate with fixed point of arbitrary bitwidth instead of 32bit floating point numbers
• Using lower bitwidth numbers reduces the resource usage
• Quantizing NNs after training (PTQ) with floating point variables decreases the accuracy
• It is possible to mitigate this effect with quantization aware training (QAT)
• Simulation results from High Level Synthesis (HLS) implementation of RNNs show that the
required bitwidth can be halved by using QAT
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Firmware Implementation
Running in the FPGA

• Single FPGA processing of 384 cells requires
special implementation

• Multiplexing implemented to serialize several
parallel networks

• Run 10 parallel networks, each computing 37
RNN cells within the 25 ns input interval

• HLS does not achieve required latency for
Phase-II specifications

• VHDL implementation based on the HLS
acquires a latency of 121 ns using 28x14
multiplexing
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Conclusion
Energy reconstruction using recurrent neural networks

• Energy reconstruction with RNNs overperform legacy
algorithms in Phase-II conditions

• Better energy resolution overall
• Better recovery of energy resolution with overlapping
signals

• Clustering to reduce the amount of required NNs
• Implemented and validated in firmware and mostly
fulfills the LAr real-time processing requirements

• Next steps: performance evaluation in full detector
simulation

• Paper published available Here
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