Machine Learning on FPGAs for Real-Time Processing for ATLAS Liquid Argon Calorimeter

Lauri Laatu, Georges Aad, Nemer Chiedde, Robert Faure, Emmanuel Monnier, Nairit Sur 1710 2022

Content

1. Background

2. RNN Architecture

3. Network Optimization and Performance

4. Conclusion

The ATLAS Experiment at the Large Hadron Collider (LHC)

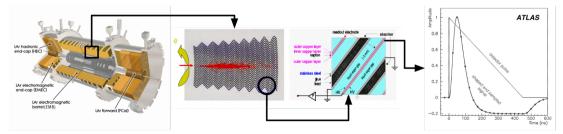
General purpose detector

- The ATLAS Experiment is one of the general purpose detectors at the LHC
 - Consists of a tracker, electromagnetic and hadronic calorimeters and muon detectors
- Proton-proton collisions every 25ns (40MHz) referred to as bunch crossings (BCs)
 - Real-time event selection from 40MHz to store events at 10kHz

Liquid Argon Calorimeter

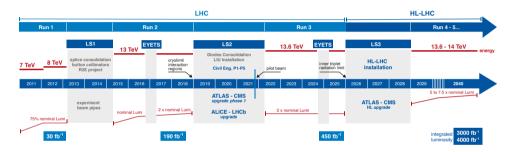
Energy reconstruction in the LAr calorimeter

- Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by electromagnetically interacting particles
 - Consisting of \approx 182 000 calorimeter cells
- Passing particles ionize the material
 - Bipolar pulse shape with total length of up to 750 ns (30 BCs)
 - Pulse is sampled and digitized at 40MHz
- Energy reconstruction is done real-time and used in triggering decision
 - Using the digitized samples from the pulse



The Phase-II Upgrade of the LHC

Upgrade of the ATLAS experiment



- The High Luminosity LHC (HL-LHC) is an important milestone for particle physics
 - Increase the luminosity to study rare processes
 - Increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing (BC)
- The detectors will be upgraded to cope with the high collision rate at the HL-LHC
 - In particular the ATLAS calorimeter readout electronics will be completely replaced

Energy Reconstruction

Energy reconstruction in the LAr calorimeter

- Current energy reconstruction uses optimal filtering algorithm with maximum finder (OFMax)
 - Using five samples around pulse shape peak is used in Phase-II studies
 - Assuming perfect pulse shape
- High pileup leads to higher rate of overlapping pulse shapes
 - Distorted bipolar shape \rightarrow significantly decreased performance of OFMax
- Energy is computed real-time at 40MHz

 Using specialized boards based on FPGAs
 For Phase-II one FPGA processes 384 channels
 Latency requirement of 125 ns

 Phase-II electronics with high-end FPGAs

 Increased computing capacity
 Improved online energy reconstruction using machine learning based methods

 Constraints from running on FPGAs

 Latency, frequency and occupancy
 - Small networks needed

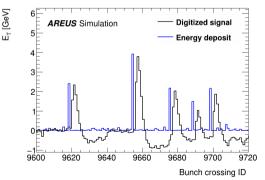


Table of Contents

1. Background

2. RNN Architecture

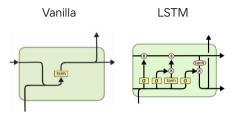
3. Network Optimization and Performance

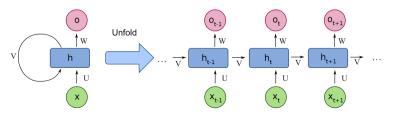
4. Conclusion

RNN Architecture

Timeseries processing

- Recurrent Neural Networks (RNNs) are designed to process time series data
- RNNs consists of neural network layers that process by combining new time input with past processed state
- Vanilla RNN is the smallest RNN structure
- Long Short-Term Memory (LSTM) network for efficiently handling past information





RNNs for Energy Reconstruction

Using a many-to-one and many-to-many networks for energy reconstruction

- Use digitized samples as inputs for the recurrent network
- Sliding window
 - Full sequence split into overlapping subsequences with a sliding window
 - One energy prediction per subsequence
 - Network receives limited amount of data from the past
 - Possible for Vanilla RNN and LSTM
- Single cell
 - Use the LSTM cell to process all digitized samples in one continuous chain instead of a sliding window
 - Full history of events available
 - Possible only for LSTM

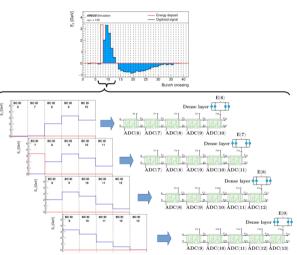


Table of Contents

1. Background

2. RNN Architecture

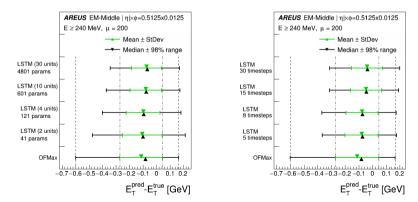
3. Network Optimization and Performance

4. Conclusion

Network Optimization

Find the smallest well performing network, example for sliding window LSTM

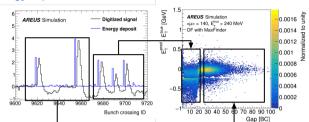
- Use standard deviation and 98% range to compare energy resolution
 - Non-gaussian distribution of the energy resolution
- Optimization of the energy resolution while keeping the network size under control
 - Vary the network parameters: internal dimension (units), sliding window size (timesteps)
 - Network trained with simulated data of a single LAr calorimeter cell using the AREUS software

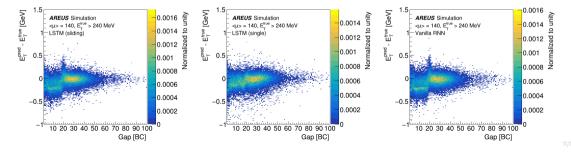


RNN Performance

Resolution as a function of gap to previous energy deposit in BCs

- Vanilla 89 params, LSTM 496 params
- Clear performance decrease with OFMax at low gap
- All RNNs perform better with overlapping events

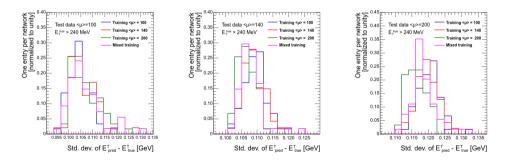




Network Robustness

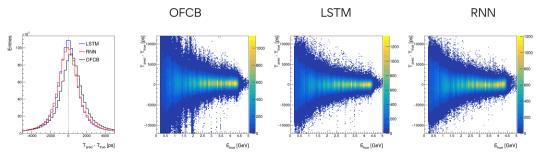
Against pileup (μ) for Vanilla RNN

- Resilience against varying pileup (simultaneous p-p collisions per BC)
- Train 276 models with different pileup rates, cross evaluate
- The networks show resilience against varying pileup



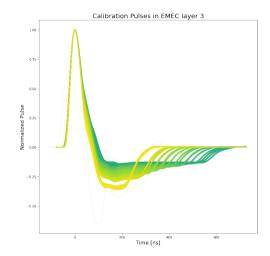
Reconstructing Energy and Timing

- Time shift in pulse shape is also computed by OF (OFCB)
- This value is used when determining the quality of the pulse
- It could possibly also be used in discovering long-lived particles
- Adding timing computation to RNN adds only few extra parameters
- RNNs reconstruct the phase shift better than OF



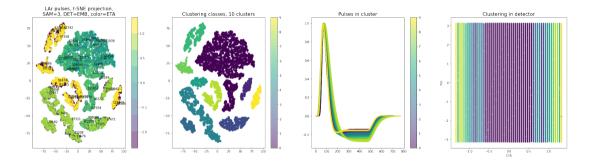
Reconstruction for the Full Detector

- LAr consists of barrel (EMB) and endcaps (EMEC) which have 4 layers each
- Significantly different pulse shapes for different parts of the detector
- Example of 10138 pulses in EMEC layer 3
 - The color denotes the abs(ETA) value
- One NN training will not perform well for the full detector, nor is 182k NNs feasible
- It is essential to find a way to reduce the amount of NNs while keeping high accuracy



Reconstruction for the Full Detector

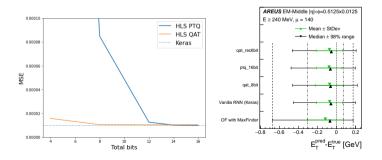
- Use t-SNE for dimensionality reduction for LAr calibration pulses to acquire 2D representation
- DBSCAN unsupervised clustering to group LAr cells with different pulse shapes
- Able to distinguish real differences in pulse shape with good ETA separation



Quantization Aware Training

Optimizing NNs for firmware

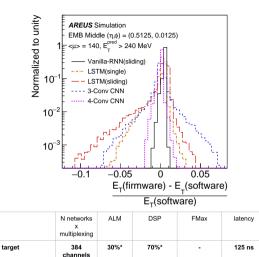
- FPGAs operate with fixed point of arbitrary bitwidth instead of 32bit floating point numbers
- Using lower bitwidth numbers reduces the resource usage
- Quantizing NNs after training (PTQ) with floating point variables decreases the accuracy
- It is possible to mitigate this effect with quantization aware training (QAT)
- Simulation results from High Level Synthesis (HLS) implementation of RNNs show that the required bitwidth can be halved by using QAT



Firmware Implementation

Running in the FPGA

- Sinale FPGA processing of 384 cells requires special implementation
- Multiplexing implemented to serialize several parallel networks
 - Run 10 parallel networks, each computing 37 RNN cells within the 25 ns input interval
- HLS does not achieve required latency for Phase-II specifications
- VHDL implementation based on the HLS acquires a latency of 121 ns using 28x14 multiplexing



L optimized	28x14	18%
*based on experience with the phase I upgrade		

384x1

37x10

226%

23%

18%

529%

100%

66%

414 MHz

561 MHz

HLS

(no multiplexing) HLS optimized

VHDL optimized

322 ns

302 ns

121 ns

Table of Contents

- 1. Background
- 2. RNN Architecture
- 3. Network Optimization and Performance
- 4. Conclusion

Conclusion

Energy reconstruction using recurrent neural networks

- Energy reconstruction with RNNs overperform legacy algorithms in Phase-II conditions
 - Better energy resolution overall
 - Better recovery of energy resolution with overlapping signals
- Clustering to reduce the amount of required NNs
- Implemented and validated in firmware and mostly fulfills the LAr real-time processing requirements
- Next steps: performance evaluation in full detector simulation
- Paper published available Here

