Aix Marseile université Socialement engagée

Cosmology with type Ia supernovae velocities

Carreres Bastien

- CPPM Seminar October 2022 -

What we observe : a flat universe in accelerated expansion

What we observe : a flat universe in accelerated expansion

General Relativity + Λ CDM

What we observe : a flat universe in accelerated expansion

General Relativity + ACDM

$$G_{\mu
u} = 8\pi G T_{\mu
u}$$

Space-Time Universe content

What we observe : a flat universe in accelerated expansion

What we observe : a flat universe in accelerated expansion

Is dark energy just a cosmological constant? or a more complex fluid? or some deviation to GR?

My thesis : use the huge sample of SN Ia observed by ZTF to test alternatives to General Relativity

A

Credit : Illustris TNG

The growth rate $f\sigma_8$

quantifies the evolution of large scale structures and is linked to the velocity field

Credit : Illustris TNG

 $\begin{array}{c} \Omega_{\Lambda} \\ \text{Dark energy} \\ \text{density} \end{array}$ $\begin{array}{c} \gamma \\ \text{Gravitational growth} \\ \text{index :} \\ \text{allows to quantify} \\ \text{deviation to GR} \end{array}$

 $\begin{array}{c} \Omega_{\Lambda} \\ \text{Dark energy} \\ \text{density} \end{array}$ $\begin{array}{c} \gamma \\ \text{Gravitational growth} \\ \text{index :} \\ \text{allows to quantify} \\ \text{deviation to GR} \end{array}$

 $\begin{array}{c} \Omega_{\Lambda} \\ \text{Dark energy} \\ \text{density} \end{array}$ $\begin{array}{c} \gamma \\ \text{Gravitational growth} \\ \text{index :} \\ \text{allows to quantify} \\ \text{deviation to GR} \end{array}$

 $\begin{array}{c} \Omega_{\Lambda} \\ \text{Dark energy} \\ \text{density} \end{array}$ $\begin{array}{c} \gamma \\ \text{Gravitational growth} \\ \text{index :} \\ \text{allows to quantify} \end{array}$

deviation to GR

 Ω_{Λ} Dark energy density γ Gravitational growth index : allows to quantify

deviation to GR

 $\begin{array}{c} \Omega_{\Lambda} \\ \text{Dark energy} \\ \text{density} \end{array}$ $\begin{array}{c} \gamma \\ \text{Gravitational growth} \\ \text{index :} \\ \text{allows to quantify} \\ \text{deviation to GR} \end{array}$

 $L \simeq cst$

 $L \simeq cst$

 $L \simeq cst$

Example of bias : sample selection

For distant objects only bright ones are detected, leading to a **selection bias**

The sample selection bias : growth rate results

Results for the **growth rate** :

- Bias appear when including SN Ia with a redshift z > 0.08
- For z > 0.08 the relative bias increase up to ~ 70 %
- With sample at z < 0.06 no bias and relative error of ~ 20 %

Conclusion

- The growth rate of structure $f\sigma_8$ is a good way to probe dark energy and deviation to GR
- SN Ia survey such as ZTF or LSST will allow to measure more precisely this parameter at low redshift, where the deviation is largest

Thank you for your attention

Power spectrum

Line of sight velocity covariance

$$C_{ij}^{vv} = \frac{(H_0 f \sigma_8)^2}{2\pi^2} \int P_{\theta\theta}(k) W_{ij}(k; \mathbf{r}_i, \mathbf{r}_j) dk$$

True velocities in simulated sample

