Experimental study of asymmetric nuclear matter EOS from heavy-ion reactions with RIBF-SPiRIT

Tadaaki Isobe RIKEN, Nishina Center 29/09/2023 Asymmetric nuclear matter EOS: Symmetry Energy term of nuclear EOS

• Equation of state of nuclear matter can be reconstructed by using the differential thermodynamic identity:

$$E(T,\rho,\delta) = E(T,\rho,\delta=0) + \frac{E_{sym}(T,\rho)}{\delta} \delta^{2} + O(\delta^{4})$$
$$\delta = (\rho_{n} - \rho_{p})/\rho$$

- The asymmetric term of nuclear EOS depends on δ
- Important term especially for astrophysics
 - Neutron star structure (T~0)
 - $T \sim 10^6 \text{ K} \sim 100 \text{ eV} \leftrightarrow \text{n Fermi-E} \sim 10 \text{ MeV}$
 - Supernovae process (T~ O(10) MeV)
 - Neutron star merger/Gravitational wave

Visualization of a NS merger and the gravitational waves

Asymmetric nuclear matter EOS: Symmetry Energy term of nuclear EOS

be obtained both from Astrophysics and nuclear physics.

Density dependent Symmetry Energy (SE) constraints obtained from structure and HI collisions

- Plotting constrain on SE at the sensitive density for each observables.
 - Skin thickness, nuclear mass, electric dipole polarizability.
- New data point at $\rho \sim 1.5 \rho_0$
- The trend of fitted function is statistically consistent with the symmetry energy extracted by Danielewicz and Lee (DL3).

Terrestrial experimental study of high dense matter nuclear symmetry energy \rightarrow Heavy Ion Collision (HIC)

- Unique way to realize high dense matter in laboratory.
- Quite challenging to extract the information of high dense matter symmetry energy since we need the help of <u>transport model</u>.
 - Mixture of equilibrium and non-equilibrium state.

Experimental observables from heavy ion collision to constrain the symmetry energy

- No direct observables, but contains the information of symmetry energy
- Symmetry energy → appeared as pressure difference between neutron and proton

Stiff symmetry energy (large L)

→ lower ρ_n/ρ_p in higher dense region → lower n/p in high ρ

Soft symmetry energy (small L)

→ larger ρ_n/ρ_p in higher dense region → larger n/p in high ρ

Experimental observables from heavy ion collision to constrain the symmetry energy

- No direct observables, but contains the information of symmetry energy
- Symmetry energy → appeared as pressure difference between neutron and proton

Stiff symmetry energy (large L)

→ lower ρ_n/ρ_p in higher dense region → lower n/p, lower π -/ π +

Soft symmetry energy (small L)

→ larger ρ_n/ρ_p in higher dense region → larger n/p, <u>higher π -/ π +</u>

Heavy RI Collision program @RIBF

- Experimental project to give a constrain on the density dependent symmetry energy mainly for higher dense region.
- Systematic measurements in same Z but different N systems realized with heavy RI beam.
 - Additional parameter we can control. (Control nuclear effect.)
 - <u>ρ~2ρ₀ nuclear matter at RIBF energy.</u>
- Effect of symmetry energy on each observables is expected to be largest around this energy region. (especially pion emission)
- 1st experimental campaign using Sn (Z=50) isotopes in 2016 spring.
 - Data taken for 4 systems.
 - 132 Sn + 124 Sn @E_{beam}/A = 270 MeV, Yp=0.39
 - ${}^{124}Sn + {}^{112}Sn @E_{beam}/A = 270 MeV, Yp=0.42$
 - ${}^{112}Sn + {}^{124}Sn @E_{beam}/A = 270 MeV, Yp=0.42$
 - 108 Sn + 112 Sn @E_{beam}/A = 270 MeV, Yp=0.45

Our device for heavy RI collosion experiment: <u>Time Projection Chamber (TPC)</u>

- Large 3D tracking detector in magnet (B=0.5T).
 - Energetic charged particle make electron-ion pair in gas (P10).
 - Electrons are drifted along with E-field.
 - Energy loss residual \rightarrow particle identification.
 - $B\rho = \frac{A}{Z} \frac{p_{nucl}}{e}$
 - dE/dX←BetheBroth(Z,v)

Sn+Sn Collision event display with TPC

Charged particle measurement with Time Projection Chamber

Measure all of particles produced in a HIC TPC ParticleID for ¹³²Sn+¹²⁴Sn Particle ID based on rigidity-dE/dx (dE/dx \propto Z²) Rigidity \rightarrow particle momentum h2GoodPID_132Sn_LR3 $\langle dE/dx \rangle$ (arb. 5.129304e+07 Entries Mean x 1028 π^{-} π 10^{-3} Mean y 269.9 10^{3} Std Dev x 513.7 [⊥]dp/Wp Std Dev y 445.7 6 10^{-5} $^{132}Sn + ^{124}Sn$ 108 Sn + 112 Sn E/A = 270 MeVE/A = 270 MeV3He 10^{-6} π^{+} π^+ 10^{2} 10^{-3} *[⊥]d*p/Mp 10^{-5} no pion potential best fit 500 1500 2000 2500 3000 1000 10^{-6} Rigidity p/q (MeV/*c*) 100 200 300 100 200 300 400 0 p_T (MeV/c) p_T (MeV/c)

 10^{3}

 10^{2}

10

Estee et al., PRL 126 (2021) 162701

Result on pion multiplicity: pion ratio →Large discrepancy among theoretical models

- Numerical calculation of HIC dynamics by using transport theory.
- Predictions with same EoS are supposed to be same \rightarrow Larger discrepancy than experimental result.
- Different assumptions regarding the mean field potentials for Δ baryons and pions can influence the pion multiplicities.

Need to understand the discrepancy among the model or use the observables which do not depend on model

High-momentum pion data: reduce the influence from the assumption for Δ /pion mean field potential

• Sensitivity to the isospin dependence of mean field dominates at high-pT.

Constrain given by HIC shows consistency with other constrains

Compilation of experimentally determined symmetry energy

- Fitting with phenomenological formula: S_0 =(33.3 ± 1.3) MeV, L= (59.6 ± 22.1) MeV
 - suggests a radius for a 1.4 solar mass neutron star of 13.1 ± 0.6 km

Extra observable: p/d/t dN/dy

Cluster production in HIC: which density is probed?

AMD Calculation ¹³²Sn+¹²⁴Sn E/A=270MeV Courtesy of A. Ono Nuclear asymmetry w.r.t. collision system

19

During collision (High dense): Inside \rightarrow less neutron Outside \rightarrow more neutron

Cluster production in HIC: which density is probed?

AMD Calculation ¹³²Sn+¹²⁴Sn E/A=270MeV Courtesy of A. Ono Distribution where a cluster is formed

Distribution of $N1 + N2 + B1 + B2 \rightarrow C1 + C2$ collisions (forming cluster).

Clusters are created mainly in the central part of the system. \rightarrow probing high dense matter ²⁰

Summary

- Symmetry energy term of nuclear EoS is essential to understand the property of neutron star.
- Heavy RI collision experiment was conducted at RIKEN-RIBF to give constraint on EoS for high dense regime.
 - Spirit experiment
 - Charged pion and hydrogen production was measured.
- Constrains for high dense ($\rho > \rho_0$) regime.
- Pion (SPiRIT) \rightarrow L = 79.5±38 MeV with dcQMD
- t/p (SPiRIT) \rightarrow L = 46±?? MeV with AMD
- n/p flow (AsyEOS@GSI) \rightarrow L = 85±32 MeV with UrQMD