



# Status of the SIRIUS detector array

#### R. CHAKMA On behalf of the SIRIUS collaboration



S3 has been funded by the French Research Ministry, National Research Agency (ANR), through the EQUIPEX (EQUIPment of EXcellence) reference ANR-10EQPX- 46, the FEDER (Fonds Européen de Développement Economique et Régional), the CPER (Contrat Plan Etat Région), and supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and by the E.C.FP7-INFRASTRUCTURES 2007, SPIRAL2 Preparatory Phase, Grant agreement No.: 212692.

SIRIUS has been funded by the CPIER (Contrat Plan Etat Inter Régional)

Rikel Chakma's contact is funded by the Région Normadie & FEDER through the SoSIRIUS RIN tremplin Grant

# Outline



- Motivation
- Overview of SIRIUS
- Characteristics and performance:
  - 1. DSSD
  - 2. Tunnel
  - 3. Tracker
- Conclusions and prospective



# **Motivation**

#### **Explore:**

- Nuclear structure of exotic nuclei
- Nature of the Nuclear interactions at large Z and A
- The limits of nuclear stability
- •

laboratoire commun CEA/DSM

using decay spectroscopy



# **Motivation**

laboratoire commun CEA/DSM

using decay spectroscopy

**Explore:** 

- Nuclear structure of exotic nuclei
- Nature of the Nuclear interactions at large Z and A
- The limits of nuclear stability



# Challenge: Production of SHN





# **Challenge: Production of SHN**





 $N_{produced} = I_{beam} \times duration \times \sigma \times \Delta x_{target} \times N_A / M_{target}$ 

**Requirements:** 

- High beam intensity
- Efficient setup + Spectrometer

# **Challenge: Detection of SHN**

#### SPIRAL2-LINAC

Tracker

Tunnel



DSSD



S3 Collaboration., Déchery, F., Drouart, A. et al., Eur. Phys. J. A 51, 66 (2015).

### S<sup>3</sup> (Super Separator Spectrometer)

Large Acceptance :

 $> \pm 50 mrad$ 

#### **High Transmission:**

 $\approx 50\%$  asymmetric reactions (Ca + Pb)

 $\approx 20\%$  very asymmetric reactions (Ne + U)

**Good Mass Separation:**  $\Delta M/M \approx 1/500$ 

Designed to perform experiments using fusion evaporation reaction with very low cross-sections

SIRIUS (Spectroscopy and Identification of Rare Isotopes Using S<sup>3</sup>)

The focal plane detection system of S<sup>3</sup>

Designed to detect heavy ions and their subsequent decays ( $\alpha$ ,  $\beta$ ,  $\gamma$ , internal conversion e-, X rays and Fission Fragments)



# Spectroscopy and Identification of Rare Isotopes Using S<sup>3</sup> (SIRIUS)





#### Identify different transitions from :

laboratoire commun CEA/DSI

- Alpha-electron correlation
- Alpha-gamma correlation
- Electron-gamma correlation
- ▶ ...

#### Measurement of :

- Lifetimes
- Excitation energies
- Multipolarity of the transitions

# Schematic of the SIRIUS Acquisition system and a second a



# DSSD





Whole DSSD has been instrumented with all 16 Numexo2 boards

### Performance of the DSSD in high gain mode with 3-alpha source

V. T. Jordanov et al. NIMA,345(1994),337-345.

laboratoire commun CEA/DSI

CNRS/IN2P



Raw spectrum





**Calibration of 256 strips** 





# Performance of the DSSD in high gain mode with 3-alpha source





K =50 and m = 10 Samples

Optimisation performed for all the 256 strips of the DSSD



#### FWHM of a single strip as a function of k and m

#### **DSSD: Auto Gain** Floating Point Charge Sensitive Amplifier (FPCSA)



IIai

laboratoire commun CEA/DSN

CNRS/IN2P

# Tunnel





# **Tunnel detectors**

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

FWHM @ 5.8 MeV with Bias Voltage 70 V and Temp = -20 C

| Detector | FWHM (keV) |
|----------|------------|
| 1        | 21.3(2)    |
| 2        | 21.9(2)    |
| 3        | 20.4(1)    |

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

# Time of Flight test using a <sup>252</sup>Cf source

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

Timestamp difference between Si and SED signals

# Time of Flight test using a <sup>252</sup>Cf source

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

∆ T(Si-SED) Sed:d=10ns, f= 35%, Si:d=10ns, f=30%

![](_page_18_Figure_5.jpeg)

# Time of Flight test using a <sup>252</sup>Cf source

![](_page_19_Picture_1.jpeg)

ЛЦ

laboratoire commun CEA/DSN

CNRS/IN2P

# **Beam tracking with SIRIUS**

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

# **Beam tracking with SIRIUS**

CNRS/IN2P laboratoire commun CEA/DSN

**Beam focussing** 

![](_page_21_Figure_3.jpeg)

# **ToF decomposition**

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

# Possible reason for 2 peaks in the ToF spectrum

![](_page_23_Figure_1.jpeg)

E in the DSSD

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

# **Time resolution**

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

# **Time resolution**

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

# **Time resolution**

![](_page_26_Figure_1.jpeg)

CNRS/IN2P

aboratoire commun CEA/DSI

Time resolution is expected to improve with the new firmware

# **Conclusions and outlook**

![](_page_27_Picture_1.jpeg)

The DSSD, the tunnel detectors and the Tracker detector have been fully instrumented

Their performance has been tested

The stability of the acquisition system has been tested

Data analysis software are ready for the users

#### Next Steps:

- Test the new DSSD firmware
- Integrate the EXOGAM Ge detectors
- Continue testing with sources/pulse generators

Make SIRIUS ready for experiments at S<sup>3</sup>

![](_page_27_Picture_11.jpeg)

![](_page_28_Picture_0.jpeg)

# Thank you for your attention SIRIUS Collaboration

- GANIL : R. Chakma, J. Piot, D. Ackermann, M. Blaizot, A. Boujrad, L. Càceres, E. Clément, S. Coudert, J. Goupil, S. Herlant, G. Lebertre, F. Lutton, C. Maugeais, J. Pancin, F. Saillant, H. Savajols, G. Wittwer
- IPHC : P. Brionnet, O. Dorvaux, H. Faure, B. Gall, Th. Goeltzenlichter, C. Mathieu
- IRFU : M. Authier, Th. Chaminade, A. Drouart, J. Kallunkathariyil, H. LeProvost, Z. Favier, B. Sulignano, Ch. Theisen
- IJClab : V. Alaphilipe, L. Gibelin, K. Hauschild, N. Karkour, X. Lafay, D. Linget, A. Lopez-Martens, F. Leblanc & 10 interns from MIT UL ESME universities.

![](_page_28_Picture_6.jpeg)

S3 has been funded by the French Research Ministry, National Research Agency (ANR), through the EQUIPEX (EQUIPment of EXcellence) reference ANR-10EQPX- 46, the FEDER (Fonds Européen de Développement Economique et Régional), the CPER (Contrat Plan Etat Région), and supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and by the E.C.FP7-INFRASTRUCTURES 2007, SPIRAL2 Preparatory Phase, Grant agreement No.: 212692.

SIRIUS has been funded by the CPIER (Contrat Plan Etat Inter Régional)

Rikel Chakma's contact is funded by the Région Normadie & FEDER through the SoSIRIUS RIN tremplin Grant

# **Time Alignment**

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

Mass separability from the ToF spectrum

![](_page_30_Figure_1.jpeg)

# **Developments for the users**

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)