Production cross-section measurement of 211 and 210 At for targeted alpha therapy Colloque Ganil: Soustons, 25th - 29th September, 2023 S. Ansari-Chauveau 28/07/23 # Targeted Radio Therapy - Localized cancer → Surgery/ External radio therapy → Hadron therapy - Diffused cancer → Chemotherapy / Internal Targetted Radio Therapy → using α/β emitters Métastases cérébrales (Corroyer 2019) from A. Doudard seminar presentation # Targeted Alpha Therapy - α particle are very efficient against small tumors: - → high energy deposited: 4-9 MeV - → high Linear Energy Transfer (LET): ~100 keV/µm DNA double strand breaks ++ Oxygen Enhancement Ration (OER) → radioresistent cells: hypoxia Schematic representation of Auger, α - and θ particles range in tissue, at the cellular scale. Source: Pouget et al. 2011. #### **Astatine production** - Alpha beam at SPIRAL2, NFS for ²¹¹At production \rightarrow Bi(α ,2n)At reaction - Depending on the alpha energy, ²¹⁰At can also be produced \rightarrow Bi(α ,3n)At reaction # Polonium production Pneumatic transfer system → developed by NPI CAS #### Experimental objective #### <u>Irradiated targets</u> - Bi \rightarrow Measure CS of At via γ -ray spectroscopy - Cu → To cross-check flux by using known cross section from the literature #### <u>α beam</u> 28 MeV < E < 31 MeV #### <u>Setup</u>: 2 spectral measurement - Using a Ge detector in ToF hall - Using 2 Exogam detectors remotely #### Experimental setup-1 - → Bi and Cu were irradiated with alpha energy 28-31 MeV - → Measurements taken at 6 different position - 1 Ge detector used - → Time between Irradiation and measurement: ~ 1 min to 22 mins, for different Bi targets. #### Experimental setup-2 - → Bi and Cu were irradiated with alpha energy 28-31 MeV - → Measurements taken with 2 Exogam clovers - → Different targets were placed under each clover - → Time between Irradiation and measurement: ~ several hours #### **Energy and Efficiency Calibration** #### Sources used: ``` ⁶⁰Co, ¹³⁷Cs, ⁸⁸Y and ¹⁵²Eu for Ge detector (TOF room) ⁶⁰Co, ¹³⁷Cs, ²²Na, ¹³³Ba for Exogam clovers ``` ## **Analysis** γ-spectrum from 2 different setups 210 At $T_{1/2}$ = 8.1 h 211 At $T_{1/2}$ = 7.2 h | Nuclei | Energy [keV] | BR | |-------------------|--------------|---------| | ²¹⁰ At | 245 | 0.69 | | ²¹⁰ At | 1181 | 0.99 | | ²¹⁰ At | 1436 | 0.29 | | ²¹⁰ At | 1483 | 0.465 | | ²¹¹ At | 687 | 0.00245 | ### <u>Cross section measurement</u> $$A_{ct} = \frac{\lambda}{(e^{-\lambda t_1} - e^{-\lambda t_2})} \times \frac{M}{r \times \epsilon}$$ $$\sigma = \frac{A_{ct}}{\phi \cdot \chi \cdot (1 - e^{-\lambda \cdot t_{irr}})} \cdot \frac{A}{N_A \cdot M_S}$$ First approximation: $\phi = \frac{I_{CF}}{C \cdot 2 \cdot a}$ **I**_{CF}: current measured by the faraday cup $[1.10^{10} \text{ C.s}^{-1}]$ **C**: calibration factor , C =1.10¹⁰ $[\text{s}^{-1}]$ [C] e: the elementary charge - | \mathbf{A}_{ct} : Activity at the end of the irradiation **λ:** radioactive decay constant of the isotope [s⁻¹] ${f t1,t2:}$ time between irradiation end and Acqu. Start & stop [b] [S⁻¹] **M:** Number of detected γ-rays ${f r}:$ branching ratio of the measured ${f \gamma}$ -ray ϵ : detection efficiency at the corresponding energy φ: incident particle fluence χ : chemical purity of the target σ : cross section t_{irr}: Irradiation duration [s] A: Target atomic mass [g.mol⁻¹] N_A: Avogadro constant [mol⁻¹] **Ms:** Target surface mass [g.cm⁻²] #### Flux 2nd approximation using lit. Copper CS → Ratio between the Lit. and Exp. flux values: @ 28 MeV: 0.89@ 29 MeV: 0.94@ 30 MeV: 1.01@ 31 MeV: 1.32 → Flux calculated by using 1st approximation (current measured by faraday cup) is rather close to the one calculated from the literature CS of Cu. #### "Cross talk" between 2 clovers #### "Cross talk" between 2 clovers #### ²¹¹At production cross-sections using Exogam ²¹⁰At production cross-sections from Ge detector (ToF room) & using Cu flux #### ²¹⁰At production cross-sections using Exogam #### **Conclusion** - → Successfully measured the cross-section of both ²¹¹At and its contaminant, ²¹⁰At at critical incident alpha energies. - → These accurate CS measurements will allow us to determine optimal energy to produce ²¹¹At with least amount of contribution from ²¹⁰At. - → First production studies of Astatine at NFS open doors for a broad and continued interdisciplinary collaboration with french laboratories, Cyceron, Arronax and Subatech in TAT. - → These first results are promising first steps for the integration of ²¹¹At at a preclinical level. # Thank you! ## **Error Propagation** $$\delta \sigma^2 = f(\delta \lambda, \delta M, \delta r, \delta \epsilon, \delta \phi)$$ $$\delta \sigma^{2} = \underbrace{\left(\frac{\partial \sigma}{\partial \lambda}\right)^{2} \delta \lambda^{2} + \left(\frac{\partial \sigma}{\partial M}\right)^{2} \delta M^{2} + \left(\frac{\partial \sigma}{\partial r}\right)^{2} \delta r^{2} + \left(\frac{\partial \sigma}{\partial \epsilon}\right)^{2} \delta \epsilon^{2} + \left(\frac{\partial \sigma}{\partial \phi}\right)^{2} \delta \phi^{2}}^{5^{th} term}$$ $$\delta \sigma^{2} = \frac{\sigma}{\lambda} \left[1 - \lambda \frac{\left(-t_{1}e^{-\lambda t_{1}} + t_{1}e^{-\lambda t_{2}} \right)}{\left(e^{-\lambda t_{1}} - e^{-\lambda t_{2}} \right)} + \frac{t_{irr}e^{-\lambda t_{irr}}}{1 - e^{-\lambda t_{irr}}} \right]^{2} \cdot \delta \lambda^{2} + \left(\frac{\sigma}{M} \right)^{2} \cdot \delta M^{2} + \left(\frac{\sigma}{r} \right)^{2} \cdot \delta r^{2} + \left(\frac{\sigma}{\epsilon} \right)^{2} \cdot \delta \epsilon^{2} + \left(\frac{\sigma}{\phi} \right)^{2} \cdot \delta \phi^{2}$$ #### **Backup slide**