

Production cross-section measurement of 211 and 210 At for targeted alpha therapy

Colloque Ganil: Soustons, 25th - 29th September, 2023

S. Ansari-Chauveau

28/07/23

Targeted Radio Therapy

- Localized cancer → Surgery/ External radio therapy → Hadron therapy
- Diffused cancer → Chemotherapy / Internal Targetted Radio Therapy → using α/β emitters

Métastases cérébrales (Corroyer 2019)

from A. Doudard seminar presentation

Targeted Alpha Therapy

- α particle are very efficient against small tumors:
 - → high energy deposited: 4-9 MeV
 - → high Linear Energy Transfer (LET): ~100 keV/µm

DNA double strand breaks ++

Oxygen Enhancement Ration (OER)

→ radioresistent cells: hypoxia

Schematic representation of Auger, α - and θ particles range in tissue, at the cellular scale. Source: Pouget et al. 2011.

Astatine production

- Alpha beam at SPIRAL2, NFS for ²¹¹At production \rightarrow Bi(α ,2n)At reaction
- Depending on the alpha energy, ²¹⁰At can also be produced \rightarrow Bi(α ,3n)At reaction

Polonium production

Pneumatic transfer system → developed by NPI CAS

Experimental objective

<u>Irradiated targets</u>

- Bi \rightarrow Measure CS of At via γ -ray spectroscopy
- Cu → To cross-check flux by using known cross section from the literature

<u>α beam</u>

28 MeV < E < 31 MeV

<u>Setup</u>: 2 spectral measurement

- Using a Ge detector in ToF hall
- Using 2 Exogam detectors remotely

Experimental setup-1

- → Bi and Cu were irradiated with alpha energy 28-31 MeV
- → Measurements taken at 6 different position
- 1 Ge detector used
- → Time between Irradiation and measurement: ~ 1 min to 22 mins, for different Bi targets.

Experimental setup-2

- → Bi and Cu were irradiated with alpha energy 28-31 MeV
- → Measurements taken with 2 Exogam clovers
- → Different targets were placed under each clover
- → Time between Irradiation and measurement: ~ several hours

Energy and Efficiency Calibration

Sources used:

```
<sup>60</sup>Co, <sup>137</sup>Cs, <sup>88</sup>Y and <sup>152</sup>Eu for Ge detector (TOF room)

<sup>60</sup>Co, <sup>137</sup>Cs, <sup>22</sup>Na, <sup>133</sup>Ba for Exogam clovers
```


Analysis

γ-spectrum from 2 different setups

 210 At $T_{1/2}$ = 8.1 h 211 At $T_{1/2}$ = 7.2 h

Nuclei	Energy [keV]	BR
²¹⁰ At	245	0.69
²¹⁰ At	1181	0.99
²¹⁰ At	1436	0.29
²¹⁰ At	1483	0.465
²¹¹ At	687	0.00245

<u>Cross section measurement</u>

$$A_{ct} = \frac{\lambda}{(e^{-\lambda t_1} - e^{-\lambda t_2})} \times \frac{M}{r \times \epsilon}$$

$$\sigma = \frac{A_{ct}}{\phi \cdot \chi \cdot (1 - e^{-\lambda \cdot t_{irr}})} \cdot \frac{A}{N_A \cdot M_S}$$
First approximation: $\phi = \frac{I_{CF}}{C \cdot 2 \cdot a}$

I_{CF}: current measured by the faraday cup $[1.10^{10} \text{ C.s}^{-1}]$ **C**: calibration factor , C =1.10¹⁰ $[\text{s}^{-1}]$

[C]

e: the elementary charge

- |

 \mathbf{A}_{ct} : Activity at the end of the irradiation

λ: radioactive decay constant of the isotope [s⁻¹]

 ${f t1,t2:}$ time between irradiation end and Acqu. Start & stop

[b]

[S⁻¹]

M: Number of detected γ-rays

 ${f r}:$ branching ratio of the measured ${f \gamma}$ -ray

 ϵ : detection efficiency at the corresponding energy

φ: incident particle fluence

 χ : chemical purity of the target

 σ : cross section

t_{irr}: Irradiation duration [s]

A: Target atomic mass [g.mol⁻¹]

N_A: Avogadro constant [mol⁻¹]

Ms: Target surface mass [g.cm⁻²]

Flux 2nd approximation using lit. Copper CS

→ Ratio between the Lit. and Exp. flux values:

@ 28 MeV: 0.89@ 29 MeV: 0.94@ 30 MeV: 1.01@ 31 MeV: 1.32

→ Flux calculated by using 1st approximation (current measured by faraday cup) is rather close to the one calculated from the literature CS of Cu.

"Cross talk" between 2 clovers

"Cross talk" between 2 clovers

²¹¹At production cross-sections using Exogam

²¹⁰At production cross-sections from Ge detector (ToF room) & using Cu flux

²¹⁰At production cross-sections using Exogam

Conclusion

- → Successfully measured the cross-section of both ²¹¹At and its contaminant, ²¹⁰At at critical incident alpha energies.
- → These accurate CS measurements will allow us to determine optimal energy to produce ²¹¹At with least amount of contribution from ²¹⁰At.
- → First production studies of Astatine at NFS open doors for a broad and continued interdisciplinary collaboration with french laboratories, Cyceron, Arronax and Subatech in TAT.
- → These first results are promising first steps for the integration of ²¹¹At at a preclinical level.

Thank you!

Error Propagation

$$\delta \sigma^2 = f(\delta \lambda, \delta M, \delta r, \delta \epsilon, \delta \phi)$$

$$\delta \sigma^{2} = \underbrace{\left(\frac{\partial \sigma}{\partial \lambda}\right)^{2} \delta \lambda^{2} + \left(\frac{\partial \sigma}{\partial M}\right)^{2} \delta M^{2} + \left(\frac{\partial \sigma}{\partial r}\right)^{2} \delta r^{2} + \left(\frac{\partial \sigma}{\partial \epsilon}\right)^{2} \delta \epsilon^{2} + \left(\frac{\partial \sigma}{\partial \phi}\right)^{2} \delta \phi^{2}}^{5^{th} term}$$

$$\delta \sigma^{2} = \frac{\sigma}{\lambda} \left[1 - \lambda \frac{\left(-t_{1}e^{-\lambda t_{1}} + t_{1}e^{-\lambda t_{2}} \right)}{\left(e^{-\lambda t_{1}} - e^{-\lambda t_{2}} \right)} + \frac{t_{irr}e^{-\lambda t_{irr}}}{1 - e^{-\lambda t_{irr}}} \right]^{2} \cdot \delta \lambda^{2} + \left(\frac{\sigma}{M} \right)^{2} \cdot \delta M^{2} + \left(\frac{\sigma}{r} \right)^{2} \cdot \delta r^{2} + \left(\frac{\sigma}{\epsilon} \right)^{2} \cdot \delta \epsilon^{2} + \left(\frac{\sigma}{\phi} \right)^{2} \cdot \delta \phi^{2}$$

Backup slide