

MORA, First Data Analysis

Polarization measurement analysis

UNIVERSITÉ

NORMANDIE

CAEN

UN (AEN

- Physics Introduction
- MORA Setting
- Data acquisition
- Data analysis
- Beam purification
- Conclusions and Outlook

Physics Introduction

In search of CP Violation

Sakharov proposal for baryogenesis

In the **SM**, **CPV** occurs when we have a complex phase in the **CKM matrix**

There has been observed direct CPV in **K**, **B** and **D** mesons decay, not enough to account for the observable matter in the universe

We can search for more CPV **inside** the SM **or** search for CPV **outside the SM**

We use nuclear physics to study the **D** correlation

Physics: β decay D-Correlation

In a GT-F mixed β decay the energy phase space can be written as *

$$\begin{split} &\omega(\langle J\rangle | E_e, \Omega_e, \Omega_\nu) dE_e d\Omega_e d\Omega_\nu \\ &= \frac{1}{(2\pi)^5} p_e E_e (E^0 - E_e)^2 dE_e d\Omega_e d\Omega_\nu \xi \bigg\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m}{E_e} \\ &+ c \bigg[\frac{1}{3} \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} - \frac{(\mathbf{p}_e \cdot \mathbf{j}) (\mathbf{p}_\nu \cdot \mathbf{j})}{E_e E_\nu} \bigg] \bigg[\frac{J(J+1) - 3\langle (\mathbf{J} \cdot \mathbf{j})^2 \rangle}{J(2J-1)} \bigg] + \frac{\langle \mathbf{J} \rangle}{J} \cdot \bigg[A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \bigg] \bigg\}. \end{split}$$

A is the **parity-violation** term, **b** the **Fierz interference** shaping-term, **a** the β - ν correlation, and **D** the **triple correlation** term.

 \boldsymbol{D} is non-zero for \boldsymbol{T} reversal violation

* Jackson, J. D.; Treiman, S. B.; Wyld, H. W. (1957) Phy Rev 106(3), 517–521

Physics: Where to find the D-Correlation

As previously said: we need a GT-F mixed decay and polarization

$$D \equiv \sin(\boldsymbol{\varphi}_{AV}) \cdot \underbrace{\frac{2\rho}{1+\rho^2} \cdot \left(\frac{J}{J+1}\right)^{1/2}}_{1+\rho^2} - \cdots$$

Final state interactions (**FSI**), never measured using D-correlation

$$D_{FSI} \sim Z \alpha \frac{E_e}{M} \cdot A(\mu_f - \mu_i)$$
 Callan and Treiman, Phys. Rev. 162(1967)1494

We to maximize the sensitivity factor F(X) and polarization degree to get the highest coupling

Proportional to mixture degree and axial
vector-vector phase

 $\varphi_{AV} = 180.013^{\circ} \pm 0.028^{\circ} (68\% \text{ CL})$

Physics: Selection of nuclei for D-Correlation

We want to maximize the sensitivity F(X)

We also need good **polarization**

	n	¹⁹ Ne	²³ Mg	³⁵ Ar	³⁹ Ca
Sensitivity <i>F(X)</i>	0,43	-0,52	-0,65	0,41	0,71
<i>D</i> ₁ (x10 ⁻⁴)	0,108	2,326	1,904	0,386	-0,489
D ₂ (x10 ⁻⁴)	0,023	0,169	0,099	0,010	-0,024
D _n = (-0.	94 ±1.89±0.97)·10 ⁻⁴ D _{19Ne} =	(1 ±6)·10 ⁻⁴	$D_{FSI}(p_e) = \left($	$D_1 \cdot \frac{p_e}{p_{emax}} + D_1$
Best m	Callan and Treiman, Phys. Rev. 162(1967)1494. Chen. Phys. Rev. 185(1969)2003.				

Physics: Laser polarization

The momentum (*J*) **polarization** is done with a **laser** setup.

The specifics of the polarization depend on the **hyperfine interaction of the isotopes**, originating from the coupling of the electrons and nucleus magnetic moments **of the nuclei**.

³⁹Ca has a harder structure to polarize than
²³Mg

Because all of this, we are using ²³Mg for our first experiments

Experimental Setup

- 2 annular **Si detectors** in the line axis -
- 4 MCP detectors, each 90° apart from each other
- 4 phoswich detectors, between the MCP detectors
- Paul Trap in the middle of the detections system
- Laser setup for polarization -

P measurement

 $-\propto A_{\beta}\cdot P$

Figure 3: Left inset: cross section of the D correlation detection setup. The trap electrodes are visible in the center of the detection setup. Right inset: sketch showing the different types of β -recoil coincidences which will be recorded by the detection setup.

$$\frac{N_{coinc}^{+45^{\circ}} + N_{coinc}^{+135^{\circ}} - N_{coinc}^{-45^{\circ}} - N_{coinc}^{-135^{\circ}}}{N_{coinc}^{+45^{\circ}} + N_{coinc}^{+135^{\circ}} + N_{coinc}^{-45^{\circ}} + N_{coinc}^{-135^{\circ}}} = \delta \cdot D \cdot P$$

MORA Trap

Paul Trap developed in LPC Caen

Paul Trap consisting on 3 pairs of **electrodes** (R1-R6) and 2 **Einzel lenses**

The electrodes (R1-R4) trap the ions

The einzel lenses focus the beam entering to the center of the trap and exiting, so they do not get deposited on Si detectors

The trapping ion cloud slowly evaporates. We use He gas to cool down the cloud and optimize the trapping half-life of ions in the trap

MORA commissioning at IGISOL in JYFL

JYFL

Data Acquisition

Data Acquisition

Nov 2022

June 2023

Target test ran with different targets: **MgO** coated with BaO, baked **Mg** and **pure Mg**

We also ran a test **injecting SF6** gas, in order to capture the ions in molecules

Data Analysis: Polarization measurement

Data Analysis: Polarization Measurement

Beam purification attempts

Beam purification attempts, ²³Na

We ran a test in June with different target heads (²⁴Mg) subjected to different treatments.

MgO coated with BaO, baked Mg and pure Mg

There was a double intention: **Baking** the targets to **evaporate** the residual **Na**, and **preventing** the **surface ionization** (or **capturing** the Na **before** escaping)

Unfortunately, the results were **not** convincingly better

Same amount of Na

This means that the contamination has to **come from other source**, future tests and analysis will say which

- Contamination in line
- Contamination of target head
- Contamination from the ion guide
- Ions and plasma ionizing Na (sputtering)

Contamination Analysis

Target	Na+	Mg+	Mg2+	MgF+
MgO	~500pA at 1uA	~9000 cnts/s at 1uA	up to ~500 cnts/s	X
Baked Mg	~450pA at 1uA	~21000 cnts/s at 1uA	up to ~600 cnts/s	X
Pure Mg (old)	~150pA at 1uA	~9000 cnts/s at 1uA	up to ~400 cnts/s	Х
Pure Mg + SF6	~14pA at 16uA	~900 cnts/s at 16uA	no measure	1000cnt/s at 16uA

Conclusions and Outlook

Outlook

The polarization measurement did not work because of ²³Na contamination, the recent target test did not improve the results, we need new ways to reduce the contamination

- Using liquid **N** for cooling down the ion guide, preventing any surface ionization or sputtering
- Continue target tests with other materials(AI, AIO coating)
- Using gas injection to trap Mg or Na in molecules (SF6, CF4)
- Study other ions (Mg2+, MgF...)
- Hot cavity approach

Gas Injection (CF⁴): December test

Injection of He + CF4 gas (~10ppm), flow mass monitor

Natural Mg²⁴ spark source.

Creation of new molecules, contamination analysis.

Molecule breaking in RFQ Cooler

Pohjalainen, I., Moore, I., Eronen, T. et al. Hyperfine Interact 227, 169–180 (2014).

Thank you for your attention!

E. Liénard M. Benali S. Daumas-Tschopp Y. Merrer X. Fléchard G. Quéméner L. Hayen

M. Gonzalez-Alonso

P. Delahaye - P.I. F. De Oliveira C. Fougères N. Goyal N. Lecesne R. Leroy L. M. Motilla B.M. Retailleau A. Singh

> MANCHESTER 1824 The University of Manchester

M.L. Bissel

KU LEUVEN

N. Severijns R.P. De Groote A. De Roubin

Z. Ge

G. Neyens M. Kowalska

Extra slides

Cryogenics

Difficult to schedule: needs preparation for montage and test, also removal.

Eliminates heat induced surface ionization and sputtering.

Data Analysis: Calibration

The calibration fit is done with a PENELOPE simulation

Sr⁹⁰ source for the Si detectors and 3 alpha sources for the RIDE detectors

Si calibration using 3 parameters

Data Acquisition

72h of **Online** experience and many hours of **Offline** calibration and tests.

4h25' of **background** measurement

6h of **no polarization** without He cooling and 2h **with He cooling**

13h of **polarization**, one in **+z direction** and other in **-z direction**.

The **buncher** acts as a bottleneck $\rightarrow 4\cdot 10^{\circ}$ ions/bunch max capacity

Data acquired with faster

Calibration of the instruments during the **offline** experience, **Na**²³⁺ source, **Sr**⁹⁰ source for Si detector calibration

+12h of data for Si detector calibration

Data acquired with cycles of 3s with 2s trapping.

Data Analysis: Polarization

Spectra of radioactive ²³Mg

Data Analysis: Polarization (Counts vs Time)

We are interested in the shape of the counts during the cycle running time

- It will tell us the source of the counts

Two distinct shapes:

- With He Cooling
- Without He Cooling

Exaggerated counts vs time for **He cooling (left)** and **no He cooling (right)** over a long enough cycle

The left should permit a measurement of the ²³Mg trapping half-life

Data Analysis: Polarization (Counts vs Time)

He cooling

Data Analysis: Polarization (Counts vs Time)

no He cooling

