

Coulomb barrier scattering of the proton halo nucleus ¹⁷Ne

Ismael Martel University of Huelva, Spain

Halo nuclei

Exotic nuclear systems composed of a nuclear core and weakly bound valence nucleons

- Extended mass distribution
- Large rms radius ~ "halo"
- Large reaction cross sections
- Narrow momentum distributions of core/breakup
- Concentration of dipole strength at low energies close to the breakup threshold
- Halo \rightarrow Borromean systems \rightarrow none of the subsystems are bound
- Typical haloes: ¹¹Be (1n), ⁶He(2n), ¹¹Li (2n), ⁸B (1p), ¹⁷Ne (2p)

T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006). T. H. Kim et al., Jour. Kor. Phys. Soc. 73 (2018) 553.

T. Kobayashi, et al. Phys. Rev. Lett. 60, 2599 (1988).

50

do/dp_ [arb]

 ^{11}Li

I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).

Coulomb barrier scattering

- Energies around Coulomb barrier-> Important coupling between elastic channel and inelastic, transfer, breakup and fusion.
- <u>Halo</u>: Low binding energy -> Coupling to the continuum
- Easily polarizable: forces between target and core/halo are different
 → distortion effects
- Dipole polarizability -> B(E1) -> large cross section for breakup.
- Nucleon transfer to the continuum
- Strong absorption in elastic channel ~ long range interactions
- <u>Coulomb rainbow disappears!</u>

Proton halos

- Coulomb repulsion limits halo formation \rightarrow only for ⁸B(1p) and ¹⁷Ne(2p) are known.
- Lack of experimental data at Coulomb barrier energies dynamics unknown
- ⁸B(1p) is the most studied proton halo, Sp(⁸B) = 136 keV only!
- Low energy measurements on ¹²C, ²⁷Al, ⁵⁸Ni, ⁶⁴Zn, ¹²⁰Sn, and ²⁰⁸Pb targets.
- In particular, for the system $^{8}B + {^{64}Zn}$,
 - Modest coupling of elastic scattering and breakup
 - Well described by OM and CDCC
 - Effects EBU + NEBU
 - Reaction cross sections are small, similar to the stable isotope ⁹Be
 - o The Coulomb Rainbow is present!!
- Complex couplings characteristic of the proton halo system
 - ✓ Higher effective Coulomb barrier Y. Kucuk and E. Aciksoz, EPJA 52(2016)98
 - Core "shading effect": the proton is "protected" by the core as it approaches the target, and the system breaks in the way out
 - \rightarrow Recently demonstrated for ⁸B + ¹²⁰Sn
 - L. Yang et al., Nature Communications 13(2022)7193

What makes ¹⁷Ne interesting?

Candidate for a two-proton Borromean halo nucleus: ¹⁵O core + two protons

- Dripline nucleus, S_{2p}=0.9 MeV & S_p=1.5 MeV
- Low lying dipole strength.
- No bound excited states.
- Narrow momentum distribution for 2p dissociation ~ 168 MeV/c
- Large matter radius.

			19Mg 4.0 ps 2P = 100.00%	20Mg 90.8 ms ε = 100.00%	21Mg 122 ms ε = 100.00%	22Mg 3.8755 s ε = 100.00%
				εp ≈ 27.00%	εp = 32.60% εα < 0.50%	
		17Na	18Na 1.3E-21 s	19Na < 40 ns	20Na 447.9 ms	21Na 22.49 s
			p = 100.00%	Р	ε = 100.00% εα = 20.10%	ε = 100.00%
	15Ne	16Ne 9E-21 s 2P = 100.01%	17Ne 109.2 ms ε = 100.00% εp = 100.00% εα	18Ne 1.6670 s 1 = 100.00%	19Ne 17.22 s ε = 100.00%	20Ne STABLE 90.48%
13F	14F 910 kev P	15F 660 kev p = 100.00%	16F 40 KeV p = 100.00%	17F 64.49 s ε = 100.00%	18F 109.77 min ε = 100.00%	19F STABLE 100%
120 0.40 mev P	130 8.58 ms ε = 100.00% εp = 11.30%	140 70.620 s ε = 100.00%	150 122.24 s ε = 100.00%	160 STABLE 99.757%	170 STABLE 0.038%	180 STABLE 0.205%

The dynamics of ¹⁷Ne at energies around the Coulomb barrier never measured before.

- Probe of B(E2;1/2- \rightarrow 5/2-) \rightarrow breakup
- Ground state mixing of (s1/2)(p3/2)(d5/2) configuration \rightarrow probe halo
- Compare with data of ²⁰Ne + ²⁰⁸Pb scattering at Coulomb barrier energies

s1/2 component						
R. Kanungo et al.,	J. Marganiec et al.,	C. Lehr et al., PLB				
EPJA 25(2005)327	PLB 759 (2016)200	827(2022)136957				
~ 20-65%	~ 25% or ~55%	~ 35%				

B(E2;1/2− \rightarrow 5/2−) e2 fm4				
J. Marganiec et al.,	M.J. Chromik, et al.,			
PLB 759 (2016)200	PRC66(2002)024313			
90 ± 18	179± 26			

J. Marganiec et al. Phys. Lett. B 759 (2016) 200–205

GANIL – SPIRAL1. Experiment E788S

Spokesperson: I. Martel, N. keeley, K. Rusek

- Scattering of ¹⁷Ne + ²⁰⁸Pb @ 136 MeV (Coulomb barrier ~ 125 MeV Lab) → ELASTIC and cross sections for ¹⁵O production
- CDCC and CRC calculations (FRESCO) \rightarrow dynamical effects of the 2p halo (Inert core of ¹⁵O(1/2+) Di-proton "halo" ²He (0+))

- CRC: stripping cross section is very small & negligible effects in the dynamics.
- CDCC: coupling to the breakup channel gives strong effects.
 - →Large absorption on elastic $\theta \sim 50^\circ 70^\circ$. → Coulomb rainbow disappear.

→Large breakup Xsec, max. θ ~ 50°.

CDCC	
Total reaction [mb]	2327
Breakup [mb]	253

- 21 shifts of ¹⁷Ne, E = 136 MeV (8 MeV/u)
- I ~ 2 x10⁴ pps.
- Target thickness of 1,5 mg/cm².
- GLORIA silicon array.

Elastic cross sections: Optical model analysis

Coupled channel calculations

Rotational model

Continuum Discretised Coupled channel calculations (Breakup)

N. Keeley, I. Martel, K. Rusek, K. Kemper. Phys. Rev. C (2023), in press.

- Simple calculation using $^{15}O + ^{2}He$ cluster model.
- Binding potential \rightarrow B(E2; 1/2- \rightarrow 5/2-) Marganiec/ Chromik reproduce elastic data (M/C models).
- Check consistency with ¹⁵O data.

Couplings

- 1.288-MeV 3/2- and 1.764-MeV 5/2- resonances
- L = 0, 1, 2 and 3 non-resonant continuum
- r0, a \rightarrow B(E2; 1/2- \rightarrow 5/2-) value
- V → binding energy
- 2 He + 208 Pb; 15O + 208Pb OM potentials \rightarrow 4 He + 208 Pb; 16 O + 208 Pb

Conclusion

- ~ 50% of BU produced by 5/2– resonance
- BE2/Chromic-> overpredicts the ¹⁵O distribution by 30−60%
 → excluded!
- BE2-> intermediate value between Chromic and Marganiec.
- CDCC calculations cannot reproduce the peak at θ lab. ~ 55°

SUMMARY AND CONCLUSIONS

- Angular distributions for the elastic scattering and inclusive ¹⁵O production cross sections of ¹⁷Ne + ²⁰⁸Pb at Coulomb barrier energies have been measured for the first time.
- The elastic data show a strong absorption pattern (no Coulomb rainbow) and suggests the presence of a halo in ¹⁷Ne.
- The angular distribution of the cross section for ¹⁵O production seems to be originated by a combination of breakup and 1p-striping through the giant resonance of ²⁰⁸Bi at Ex~ 11 MeV.
- The data can be described by OM, CDCC and DWBA calculations.
- B(E2; 1/2- → 5/2-): the value of Marganiec et al. seems more consistent with the data, but it should be measured in a dedicated experiment.
- The reaction cross section is similar to the scattering of the stable isotope ²⁰Ne. Thus the system seems to present coreshading effects similar to the system ⁸B+¹²⁰Sn.
- To probe this effect: new experiment with medium mass target like ⁶⁴Zn, where the Qval matching excludes the production of ¹⁵O from 2p/1p channels.

¹⁷Ne collaboration

Probing the dynamics of the two-proton haloes with the Coulomb-barrier scattering of ¹⁷Ne

I. Martel¹, K. Rusek², N. Keeley³, A. Chbihi⁴, L. Acosta¹⁰, L. Barrón¹⁰, C. Borcea¹⁹, M.J.G. Borge¹⁷, J. Cederkall⁹, N. Ceylan^{6,1}, E. Chávez¹⁰, H. Dapo⁶, A. Di Pietro⁷, P. Figuera⁷, C. García-Ramos¹, T. Kurtukian-Nieto, M. La Commara¹², G. La Rana¹², K. Mahata¹⁴, F. Manchado de Sola¹, D. Marín-Lambarri¹⁰, M. Mazzocco¹¹, A.K. Orduz¹, A. Pakou⁵, S. Pandit¹⁴, C. Parascandolo¹³, V. Parkar¹⁴, D. Pierroutsakou¹³, R. Raabe⁸, M. Renaud⁸, A.M. Rodríguez-Pérez¹, A.M. Sánchez-Benítez¹⁵, J. Sánchez-Segovia¹, O. Sgouros⁷, A. Shrivastava¹⁴, F. Soramel¹¹, V. Soukeras⁷, R. Sparta⁷, N. Soic²⁰, O. Tengblad¹⁷, R. Wolski¹⁶, J. Yang⁸.

1) Science and Technology Research Centre, University of Huelva, 21071 Huelva, Spain.

2) Heavy Ion Laboratory, University of Warsaw, Pasteura 5a, 02-093 Warsaw, Poland.

3) National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Poland.

4) Grand Accélérateur National d'Ions Lourds. BP 55027 - 14076 CAEN, Cedex 05, France.

5) Department of Physics and HINP, The University of Ioannina, 45110 Ioannina, Greece.

6) Akdeniz University, Pinarbasi Mahallesi, 07070 Konyaalti, Antalya, Turkey.

7) INFN-Laboratori Nazionali del Sud, 95125 Catania, Italy.

8) Instituut voor Kern- en Stralingsfysica, B-3001 Heverlee, Belgium.

9) Physics Department, Lund University, Box 118, 221 Lund, Sweden.

10) Instituto de Física, UNAM, Ciudad de México, México.

11) University of Padova and INFN-Padova, Italy.

12) University of Napoli and INFN-Napoli, Italy.

13) INFN-Napoli, Italy.

14) Bhabha Atomic Research Centre, Mumbai - 400085 India.

15) Faculty of Experimental Sciences, University of Huelva, 21071 Huelva, Spain.

16) Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow.

17) Instituto de Estructura de La Materia - CSIC. Serrano 113 bis, ES-28006 Madrid, Spain.

18) Centre Etudes Nucléaires de Bordeaux Gradignan, Chemin du Solarium, Gradignan F-33175, France.

19) IFIN-HH PO-BOX MG-6, 76900 Bucharest Magurele, Romania.

20) Rudjer Boskovic Institute, Bijenicka cesta 54, HR-10000 Zagreb, Croatia.

