STUDY OF THE TENSOR FORCE CONTRIBUTION IN THE OXYGEN ISOTOPES USING QFS REACTIONS

Barrière Antoine, Mozumdar Nikhil, Sorlin Olivier
and the R3B Collaboration

Study of the evolution of proton $p_{3 / 2}-p_{1 / 2} \mathrm{SO}$ splitting between ${ }^{16} \mathrm{O}$ and ${ }^{22} \mathrm{O}$

In the shell model framework, the nuclear interaction can be divided in several parts:

- Central
- Spin-orbit
- Tensor

A review[1] and global fit based mostly on stable nuclei data reproduces the SO splitting with the following function :

$$
\Delta_{S O}=\frac{24.5}{n}(l+1 / 2) A^{-0.597}
$$

The factor $\sim \mathrm{A}^{-2 / 3}$ is the fingerprint of the role of the SO interaction in this trend (surface term).

Trend of Mairle[1] and review of new physics cases
[1] G. Mairle, Phys. Lett. B 304 (1993) 39.
[2] S. Jongile et al. to be submitted to Nature Physics.

Study of the evolution of proton $p_{3 / 2}-p_{1 / 2} \mathrm{SO}$ splitting between ${ }^{16} \mathrm{O}$ and ${ }^{22} \mathrm{O}$

In the shell model framework, the nuclear interaction can be divided in several parts:

- Central
- Spin-orbit
- Tensor

A review[1] and global fit based mostly on stable nuclei data reproduces the SO splitting with the following function :

$$
\Delta_{S O}=\frac{24.5}{n}(l+1 / 2) A^{-0.597}
$$

The factor $\sim \mathrm{A}^{-2 / 3}$ is the fingerprint of the role of the SO interaction in this trend (surface term).

Estimation of the proton gap $0 p_{1 / 2}-0 p_{3 / 2}$:
in ${ }^{16} \mathrm{O}-->7.02 \mathrm{MeV}$
in ${ }^{22} \mathrm{O}$--> 5.81 MeV
Deviations from this trend may be due to the tensor force contribution

Trend of Mairle[1] and review of new physics cases
[1] G. Mairle, Phys. Lett. B 304 (1993) 39.
[2] S. Jongile et al. to be submitted to Nature Physics.

Role of tensor force in the \mathbf{O} isotopic chain

Tensor interaction [3]:

The tensor force should then reduce the spin-orbit splitting $0 p_{1 / 2}-O p_{3 / 2}$ (proton) in the O isotopic chain, when the $0 d_{5 / 2}$ (neutron) is filled.

[3] T.Otsuka et al, PRL 95 (2005) 232502.

Role of tensor force in the \mathbf{O} isotopic chain

Tensor interaction [3]:

The tensor force should then reduce the spin-orbit splitting $0 p_{1 / 2}-O p_{3 / 2}$ (proton) in the O isotopic chain, when the $0 d_{5 / 2}$ (neutron) is filled.

[3] T.Otsuka et al, PRL 95 (2005) 232502.

Role of tensor force in the \mathbf{O} isotopic chain

Tensor interaction [3]:

The tensor force should then reduce the spin-orbit splitting $0 p_{1 / 2}-0 p_{3 / 2}$ (proton) in the O isotopic chain, when the $0 d_{5 / 2}$ (neutron) is filled.

[3] T.Otsuka et al, PRL 95 (2005) 232502.

Experimental setup

$R^{3} B$ setup at GSI
Cocktail beam from FRS (2 beam settings)
Beam energy: ~550MeV/A

QFS reaction e.g. ($p, p n$) and ($p, 2 p$) in LiH
Complete measurement in inverse kinematics:

Experimental setup

$R^{3} B$ setup at GSI

Cocktail beam from FRS (2 beam settings)
Beam energy: ~550MeV/A

QFS reaction e.g. ($p, p n$) and ($p, 2 p$) in LiH
Complete measurement in inverse kinematics:

LOS (t)

MusLi ($\Delta \mathrm{E}$) + MWPC (x, y)

Experimental setup

$R^{3} B$ setup at GSI
Cocktail beam from FRS (2 beam settings)
Beam energy: ~550MeV/A

QFS reaction e.g. ($p, p n$) and ($p, 2 p$) in LiH
Complete measurement in inverse kinematics:

- Incoming nucleus;
- Light particles and gammas emitted from the target;

CALIFA $(\theta, \phi, \Delta E)$ Array of Csl crystals

Experimental setup

$R^{3} B$ setup at GSI
Cocktail beam from FRS (2 beam settings)

Beam energy: ~550MeV/A

QFS reaction e.g. ($p, p n$) and ($p, 2 p$) in LiH

Complete measurement in inverse kinematics:

- Incoming nucleus;
- Light particles and gammas emitted from the target;

- Outgoing fragment;

Experimental setup

$R^{3} B$ setup at GSI
Cocktail beam from FRS (2 beam settings)

Beam energy: ~550MeV/A

QFS reaction e.g. ($p, p n$) and ($p, 2 p$) in LiH

Complete measurement in inverse kinematics:

- Incoming nucleus;
- Light particles and gammas emitted from the target;
- Outgoing fragment;
- Neutrons.

NeuLAND (x, y, z, t) with 26 plans

Identification of the incoming nuclei

2 settings were used :

ΔE (MusLi) --> Z
(Bethe-Bloch)

$$
A / Q=\frac{B \rho_{0} \cdot\left(1-\operatorname{Pos} S 2 / D_{S 2-C C}\right)}{3.10716 \cdot \beta \cdot \gamma}
$$

Identification of the N isotopes from the ${ }^{22} \mathrm{O}(p, 2 p)^{21} \mathrm{~N}$ reaction

Population of bound states in the ${ }^{22} \mathrm{O}(p, 2 p)^{21} \mathrm{~N}$ reaction

CALIFA (Barrel + Endcap): 1504 crystals, including 480 with 2 electronic gains (Endcap)

Population of bound states in the ${ }^{22} \mathrm{O}(p, 2 p)^{21} \mathrm{~N}$ reaction

$$
\begin{array}{ll}
\begin{array}{l}
\text { Resolution: } \\
\sigma=40 \mathrm{keV} \text { at } \mathrm{E}_{\nu}=1.170 \mathrm{MeV}
\end{array} & \varepsilon_{\gamma}(1.170 \mathrm{MeV})=26 \% \\
=>\text { FWHM } / \mathrm{E}_{\gamma}=8 \%
\end{array} \quad \begin{aligned}
& \text { Results }: \frac{N\left(3 / 2_{1}^{-}\right)}{N\left(1 / 2_{G S}^{-}\right)}=\frac{N\left(3 / 2_{1}^{-}\right)}{N_{\text {incl }}-N\left(3 / 2_{1}^{-}\right)}=19.0(31) \%
\end{aligned}
$$

=> Among the bound states, the $1 / 2^{-}{ }_{\text {Gs }}$ is the most populated by the $(p, 2 p)$ reaction.

NeuLAND and the invariant mass method

Alignment of the time difference of the two PMTs for each bar, using cosmic rays (muons) and a tracking algorithm.

Portion of NeuLAND crossed by a cosmic ray particle.

Use of the invariant mass method:
$M_{i n v}=\sqrt{\left(\sum_{i=0}^{N} E_{i}\right)^{2}-\left(\sum_{i=0}^{N} p_{i}\right)^{2}}$
with the energy and momentum of the fragment and neutron(s)

$$
E_{r e l}=M_{i n v}-\sum_{i=0}^{N} m_{i}
$$

Population of neutron unbound states in the ${ }^{22} \mathrm{O}(p, 2 p)^{21} \mathrm{~N}$ reaction

$S_{2 n}=6.75 \mathrm{MeV}$

Fit of the $E_{\text {rel }}$ distribution requires to take into account:

- Time resolution of NeuLAND --> already done;
- Effective resolution of the beta(fragment)
--> straggling + detector resolution --> still ongoing.

Conclusions and perspectives

Conclusions and perspectives

Conclusions and perspectives

First estimation of the proton gap in ${ }^{22} \mathrm{O}$:

$$
\begin{aligned}
& <0 p_{3 / 2}>_{s . p .} \geq \frac{E^{*}\left(3 / 2_{1}^{-}\right) N\left(3 / 2_{1}^{-}\right)+N_{1 n} E_{1 n}^{*}}{N\left(3 / 2_{1}^{-}\right)+N_{1 n}} \\
& <0 p_{3 / 2}>_{\text {s.p. }}-<0 p_{1 / 2}>_{s . p .} \geq 5.46 \mathrm{MeV}
\end{aligned}
$$

Conclusions and perspectives

Perspectives:

- Study of the ${ }^{21} \mathrm{O}$ momentum via ${ }^{22} \mathrm{O}(\mathrm{p}, \mathrm{pn})$
(6 neutrons in the neutron orbital $0 d_{5 / 2}$?);
- 1n spectroscopy, w. gamma-neutron coincidences;
- Analysis of unbound states decaying by $2 n$ emission.

Conclusions and perspectives

Backup Slides

Tracking around the target

FOOTs mapping : 4 on each side +4 in-beam

NeuLAND calibration

PMTs time for one bar -> position within the bar + ToF (target-bar)

1) Alignment of the time difference of the two PMTs for each bar, using cosmic rays and a tracking algorithm

Time difference left/right or bottom-top PMTs vs Bar Id, for on-spill events

Portion of NeuLAND crossed by a cosmic ray particle.

For each bar, we can define:
Time diff : T1-T2
-> Effective speed of light
Time synch : T1 + T2
-> Global offset
(1) $=>$ diff correction
(2) $=>$ synch correction
(3) $=>$ both of them

NeuLAND calibration

PMTs time for one bar -> position within the bar + ToF (target-bar)

1) Alignment of the time difference of the two PMTs for each bar, using cosmic rays and a tracking algorithm

Time difference left/right or bottom-top PMTs vs Bar Id, for on-spill events
2) Fine tuning with the gamma peak

Califa and the QFS reactions

Modifications of the gamma simulations

Crystal Id vs energy (simulation): 1274 keV peak

Use of simulations in gamma analysis:
-> To get the energy of the transitions
-> To obtain the associated cross section

