Colloque GANIL 2023

25.-29. Sept. 2023

The LRC approach to unveiling the electronic structure of heavy and superheavy cations

Mustapha Laatiaoui

JOHANNES GUTENBERG UNIVERSITY HELMHOLTZ INSTITUTE MAINZ

1

The LRC team

Research areas

- HEs/SHEs
- Transport properties
- Atomic structure
- Nuclear properties

Collaborators

- A. Borschevsky (Groningen)
- L. A. Viehland (Chatham)
- M. Block (Mainz)
- S. Raeder
- E. Rickert
- A. Aayush

www.lrc-project.eu

LRC_Mainz

Outline

- Why is understanding the electronic structure of SHEs important?
- Experimental challenges
- Laser Resonance Chromatography (LRC)
 - The method & the setup
 - Results from inauguration experiments (Lu⁺)
 - Prospects for LRC on Lr⁺
- Summary & Outlook

Charge radii $\delta \langle r^2 \rangle^{AA'} = \left(\Delta v^{AA'} - \frac{A - A'}{AA'} M \right) \frac{1}{F}$

Experimental challenges

Professor

Neutrons \rightarrow

- On-line production in nuclear fusion reactions
 → requires high intensity projectile beams
- Huge background
 → requires recoil separators
- Energetic recoils + short half-lives
 - \rightarrow require gas catchers
 - \rightarrow requires fast experimental techniques
- High emittance
 - \rightarrow requires spatial confinement of atoms

RIS-based methods in the actinides

In-gas-cell based methods

Radiation Detected Resonance Ionization Spectroscopy (RADRIS)

In-gas-jet based methods

• Fast neutralization of stopped ions

Laser Resonance Chromatography (LRC)

General features

• Fast (milliseconds)

ightarrow No need for neutralization/evaporation of sample atoms

- Sensitive
 - \rightarrow No need for fluorescence detection
 - \rightarrow No need for photoionization
- Suitable for d-block elements
 - ightarrow Insensitive to physicochemical properties
- Efficient
 - ightarrow No cycle losses
 - \rightarrow Permanent monitoring of production/extraction
- Versatile
 - ightarrow Broadband initial level search
 - \rightarrow Precision HFS
 - ightarrow Can be applied to molecules
- Disadvantages
 - \rightarrow No neutrals
 - \rightarrow No HCI
 - \rightarrow No access to IP

The LRC setup

The drift tube system

The first LRC shot

M. Laatiaoui et al., Phys. Rev. Lett. 125 (2020) 023002

Excitation schemes for Lr⁺

Mobilities for Lr^{+*}

- Interaction potentials from *ab-initio* (MRCI) calculations
 - \rightarrow Good agreement with SRCC and IHFSCC
 - \rightarrow "Anisotropic spin-orbit coupled approximation"

Summary & Outlook

- $\checkmark\,$ LRC setup developed and successfully commissioned
- ✓ LRC proof-of-principle established on $^{175}Lu^{+}$
- ✓ Hyperfine spectroscopy on Lu⁺ has been also carried out
- Bunching & transmission efficiency of the LRC setup sufficiently high
- ✓ Predictions of electronic structure and transport properties of Lr⁺ look quite promising
- \checkmark Queued experiments:
 - \rightarrow optimizing bunch-mode operation
 - → offline LRC on actinium-225 (sensitivity test)
 - \rightarrow online experiments Lu⁺ & Lr⁺... (stay tuned)

Thank you!