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Isospin transport phenomena

• The symmetry energy term of the NEoS governs the isospin transport  phenomena, 
i.e. the nucleon exchange between projectile and target

• The isospin transport can be expressed as the difference between the neutron and 
proton currents between the two nuclei during the collision: 
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• Isospin diffusion: driven by an isospin gradient → QP-QT equilibration

• Isospin drift: driven by a density gradient → neutron enrichment of the neck region
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The INDRA-FAZIA apparatus

INDRA and FAZIA are multi-detector apparatuses for the detection of charged fragments 

produced in heavy ion collisions at Fermi energies.

Since 2019, INDRA (rings 6-17) and FAZIA (12 

blocks) have been coupled.

• The large angular coverage of INDRA (14°-

176°) allows the characterization of events.

• FAZIA, covering the forward polar angles 

(1.4°<θ<12.6°), provides an optimal (Z,A) 

identification of QP-like fragments

3



Energy thresholds for (Z,A) identification  

The aim of using Pulse Shape Analysis on the first 

layer is to reduce the energy thresholds for (Z,A) 

identification with respect to the ΔE-E technique

Si1  Si2                   CsI(Tl)

FAZIA telescope

4

• Energy thresholds for atomic (■) and mass (★) number 

identification via PSA obtained using a single detector 

(ISO-FAZIA experiment in 2016). 

• Average energy thresholds for atomic (□) and mass (☆) 

number identification via PSA obtained using ~ 100 

detectors (E818 experiment in 2022).

→ The average energy thresholds are comparable with 

those obtained for a single detector.

G. Pastore et al., NIM A 860 (42), 2017

58Ni+58Ni @ 74 AMeV 



The 58Ni+ 58Ni reaction at 32, 52 and 74 AMeV

58Ni+ 58Ni at 32 and 52 AMeV

• E789 experiment (2019) 
• The four possible combinations of the two reaction partners 58Ni and 64Ni have been studied at 

two incident beam energies 32 and 52 AMeV.
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➢ The QP-QT isospin 
equilibration have been 
investigated using the isospin 
transport ratio (F. Rami et al., PRL 

84, 1120 (2000)) finding a 
stronger equilibration at 
lower beam energy, as 
expected due to a longer 
interaction time. 

QP evaporation channel QP breakup channel

C. Ciampi et al., PRC 106, 024603 (2022) C. Ciampi et al., arXiv:2308.15077 (2023)



58Ni+58Ni at 74 AMeV

• E818 experiment (2022)

• Measurement of 36Ar+58Ni and 58Ni+58Ni collisions at 74 AMeV

• Performed for a different specific physics case

• The 58Ni+58Ni reaction at 74 AMeV can be also exploited for a comparison with 
the previous measurements at lower energies

• Investigation of the isospin drift as a function of the beam energy, i.e. reasonably 
moving to shorter interaction time between projectile and target

• Calibration and identification of the experimental data are almost complete
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The 58Ni+ 58Ni reaction at 32, 52 and 74 AMeV



The AMD+GEMINI simulations

The simulation of the reactions at  Fermi energies is performed in two steps:

• Dynamical Phase: 

• AMD (Antisymmetrized Molecular Dynamics):

• ~ 20000 primary events

• asy-stiff parametrization

• stopped at 500 fm/c

• the impact parameter follows a triangular distribution (from 0 up to bgrazing) 

• Statistical phase:
• GEMINI:

• de-excitation of primary fragments

• 100 secondary events for each primary event
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Characteristics of the primary fragments 

• Peripheral  collisions: 

• in all cases the exit channel is binary 
characterized by two big fragments, the QP 
and the QT, and some LCPs and IMFs

• Central collisions:

• at 32 AMeV some heavy fragments are 
produced in a sort of incomplete fusion

• at 52 and 74 AMeV the binary character 
persist but there is an enhanced of lighter 
fragments consistent with multifragmentation 
and vaporization process. 

• Z vs vz
cm for different centrality bins 

(bred=b/bgrazing) 
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Isospin drift
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• <N>/Z vs vlab

• A well-known experimental observation in peripheral and semiperipheral collisions is the neutron 
enrichment of the midvelocity emissions

• The isospin content of the lighter fragments is usually studied as a function of their emitted pattern 

Adapted from S. Barlini et al., PRC 87, 054607 (2013)

• multiplicities for the midvelocity (●) and 
evaporative (○) components

Adapted from E.Plagnol et al., PRC 61(1999) 014606

centrality



Isospin drift
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• Average multiplicities per event 
of p, d, t, 3He, α, 6He, 6Li, 7Li 

o Evaporative component

• Midvelocity component

➢ The evaporative component is quite similar → similar QP sources in terms of 
excitation energy

➢ A neutron enrichment of the midvelocity component with respect to QP emissions 
is predicted.

Analysis of the secondary fragments in 4π: selection of the QP evaporation channel 

p   d    t 3He α 6He 6Li 7Li p   d    t 3He α 6He 6Li 7Li p   d    t 3He α 6He 6Li 7Li 

32 AMeV 52 AMeV 74 AMeV

p   d    t 3He α 6He 6Li 7Li 

32 AMeV
52 AMeV
74 AMeV
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Isospin drift

• Average multiplicities per event 
of p, d, t, 3He, α, 6He, 6Li, 7Li 

o Evaporation component

• Midvelocity component

➢ The evaporative component is quite similar → similar QP sources in terms of 
excitation energy

➢ A neutron enrichment of the midvelocity component with respect to QP emissions is 
predicted.

➢ The neutron enrichment of the midvelocity component is still predicted in the filtered 
data

p   d    t 3He α 6He 6Li 7Li p   d    t 3He α 6He 6Li 7Li 

32 AMeV 52 AMeV 74 AMeV

p   d    t 3He α 6He 6Li 7Li 

Analysis of the secondary fragments filtered: selection of the QP evaporation channel 



Conclusions and future perspectives

• Conclusions

• The analysis of the AMD+GEMINI simulations  

• Observation of a neutron enrichment of the midvelocitycomponent that can be interpreted as an evidence of isospin drift.

• Future perspectives

• Investigation on the forthcoming experimental data of E818 will allow to explore the isospin transport process as a function of 

the beam energy and to test model predictions

• Investigation of the isospin drift: challenge to employ various sensitive robust observable

• Investigation of different reaction channels: the QP evaporation and the QP break up
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Thank you

13



Backup slides 
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Nuclear Equation of State

Heavy ion collisions at intermediate energies allow to collect information on the Nuclear Equation of State (NEoS)

• NEoS: energy per nucleon as a function of

• nuclear density 𝜌 = 𝜌𝑛 + 𝜌𝑝

• isospin asymmetry 𝛿 =
𝜌𝑛−𝜌𝑝

𝜌𝑛+𝜌𝑝

• Expand around δ=0 → separate symmetric and asymmetric term
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• 1° term: binding energy for symmetric nuclear matter

• 2° term: dependence from isospin asymmetry.

 Expand around 𝜌~𝜌0 (𝜌0 saturation density) 

 
𝐸𝑠𝑦𝑚
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3𝜌

2
+⋯

• Theoretical models → two possible parametrisations: asy-stiff and asy-soft
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Isospin transport phenomena

• During peripheral collisions, the symmetry energy term governs the isospin transport
phenomena, i.e. the nucleon exchange between projectile and target

• It can be expressed as the difference between the neutron and proton currents between
the two nuclei during the collsion: 

𝑗𝑛 − 𝑗𝑝 ∝
𝐸𝑠𝑦𝑚
𝐴

𝜌 ∇𝛿 + 𝛿
𝜕
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𝐴

𝜌

𝜕𝜌
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• Isospin diffusion: driven by an isospin gradient in the system (asymmetric system), leading to isospin equilibration. 

Sensitive to 
𝐸𝑠𝑦𝑚 𝜌

𝐴

• QP-QT isospin equilibration

• Isospin drift: driven by density gradient (neck 𝜌 < 𝜌0). Can be isolated choosing a symmetric system. Sensitive to 
𝜕𝐸𝑠𝑦𝑚/𝐴 𝜌

𝜕𝜌

• Neutron enrichment of the neck region
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Figure-of-Merit (FoM) method

• the PID vs Energy correlation is divided 

into consecutive energy intervals.  

• For each of them the data are 

projected on the PID axis by 

integrating the event density over the 

energy interval obtaining the PID 

distribution spectra relative to each 

interval.

• I evaluated the FoM for the adjacent 

element pairs (Z threshold) and for the 

adjacent most abundant isotopic pairs 

of a given Z (A threshold).

• The energy threshold is determined as 

the energy above which the two peaks 

have a FoM > 0,7. 

17



Breakup of the QP

• Breakup or dynamical fission: fast, asymmetric and anisotropic fission process with a time scale of 200-300 
fm/c

• Different from statistical fission, a de-excitation process taking place in longer time scales and characterised by isotropic 
angular distribution 

• A possible interpretation of the phenomenon

• QP, QT separate featuring a strong deformation and angular momentum

• Prompt breakup 

• Formation of a Light Fragment (form the neck side) and a Heavy Fragment -> asymmetric

• Fast process 

• LF emitted towards CM -> anisotropic

• Isospin equilibration also between the two breakup fragments 
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