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Isospin transport phenomena

* The symmetry energy term of the NEoS governs the isospin transport phenomena,
i.e.the nucleon exchange between projectile and target

* The isospin transportcan be expressed as the difference betweenthe neutron and
proton currents betweenthe two nuclei during the collision:
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* Isospin diffusion: driven by an isospin gradient — QP-QT equilibration

* Isospin drift: driven by a density gradient — neutron enrichment of the neck region



The INDRA-FAZIA apparatus

INDRA and FAZIA are multi-detector apparatusesfor the detection of charged fragments
produced in heavy ion collisions at Fermi energies.

Since 2019, INDRA (rings 6-17) and FAZIA (12
blocks) have been coupled.

 The large angular coverage of INDRA (14°-
176°) allows the characterization of events.

« FAZIA, covering the forward polar angles
(1.4°<6<12.6°), provides an optimal (Z,A)
identification of QP-like fragments
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The >8Ni+>8Ni reaction at 32, 52 and 74 AMeV

S8Ni+ 58Ni at 32 and 52 AMeV
« E789 experiment(2019)

« The four possible combinations of the two reaction partners *8Ni and ¢*Ni have been studied at
two incidentbeam energies 32 and 52 AMeV.
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The >8Ni+>8Ni reaction at 32, 52 and 74 AMeV

58Ni+°8Niat 74 AMeV
« E818 experiment(2022)

 Measurement of 3Ar+°8Ni and *8Ni+°8Ni collisions at 74 AMeV

Performed for a different specific physics case

The >8Ni+°8Ni reaction at 74 AMeV can be also exploited for a comparison with
the previous measurements at lower energies

* Investigation of the isospin driftas a function of the beam energy,i.e.reasonably
moving to shorter interaction time between projectile and target

Calibration and identification of the experimental data are almost complete



The AMD+GEMINI simulations

The simulation of the reactions at Fermi energies is performed in two steps:

* Dynamical Phase:
« AMD (Antisymmetrized Molecular Dynamics):
« ~ 20000 primary events
* asy-stiff parametrization
 stoppedat 500 fm/c
» the impact parameter follows a triangular distribution (from 0 up to bg;,ying)

» Statistical phase:
« GEMINI:
 de-excitation of primary fragments
« 100 secondary events for each primary event



Characteristics of the primary fragments
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Isospin drift

A well-known experimental observation in peripheral and semiperipheral collisions is the neutron

enrichment of the midvelocity emissions

The isospin content of the lighterfragments is usually studied as a function of their emitted pattern
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Isospin drift

Analysis of the secondary fragments in 4m: selection of the QP evaporation channel
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» The evaporative componentis quite similar — similar QP sourcesin terms of

excitation energy

» A neutron enrichment of the midvelocity component with respectto QP emissions

is predicted.
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Isospin drift

Analysis of the secondary fragments filtered: selection of the QP evaporation channel

« Average multiplicities per event
of p,d, t, 3He, a, ®He, 6Li, ’Li
O Evaporation component
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The evaporative componentis quite similar — similar QP sources in terms of
excitation energy

A neutron enrichment of the midvelocity component with respectto QP emissionsiis
predicted.

» The neutron enrichment of the midvelocity componentis still predicted in the filtered

data
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Conclusions and future perspectives

» Conclusions
* The analysis of the AMD+GEMINI simulations

* Observation of a neutron enrichmentofthe midvelocitycomponentthatcan beinterpreted as an evidence of isospin drift.

* Future perspectives

* Investigation on the forthcoming experimental data of E818 will allow to explore the isospin transport process as a function of
the beam energy and to test model predictions
* Investigation of the isospin drift: challenge to employ various sensitive robust observable

* Investigation of differentreaction channels:the QP evaporationand the QP break up
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Nuclear Equation of State

Heavy ion collisions at intermediate energiesallow to collectinformation on the Nuclear Equation of State (NEoS)

* NEoS: energy per nucleon as a function of
* nucleardensityp = p, + p,

Pn—Pp

* isospinasymmetry§ = -
n'tFp

* Expandaround6=0— separate symmetric and asymmetric term

E E E 70 _I LI | L | LI 1T T I"I_rl l_
z _E Esym ¢ V&2 : P
~(p,8) == (p) +—==(p)6 60 | E
* 1°term: binding energy for symmetric nuclear matter <50 F =
« 2°term:dependence fromisospin asymmetry. = 40 b _

Expand around p~p, (p, saturation density)

Esym ;  _ p=po\ , 1 p=po)? |
22 (p) = Ssym + Loym (522) + 3 Koym (522)

« Theoretical models — two possible parametrisations: asy-stiff and asy-soft
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Isospin transport phenomena

* During peripheral collisions, the symmetry energy term governs the isospin transport
phenomena, i.e. the nucleon exchange between projectile and target

* |t can be expressed as the difference between the neutron and proton currents between
the two nuclei during the collsion:

Es
ym
= oy o )v5+5a iy
— XX
Jn = Jp <= (p op VP
* lIsospin diffusion: driven by an isospin gradientin the system (asymmetric system), leading to isospin equilibration.
Sensitive to Esym(p)

« QP-QT isospin equilibration
. Isospin(d)rift: driven by density gradient(neck p < p,). Can be isolated choosing a symmetric system. Sensitive to
OEsym/Ap
ap
Neutron enrichment of the neck region
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Figure-of-Merit (FoM) method

 the PID vs Energy correlation is divided
into consecutive energy intervals.

 For each of them the data are a1 : - FoM = PID, = 2D,
projected on the PID axis by 12| o FWHM, + FWHM,
integrating the event density over the 10l & e Z identification A identification
energy interval obtaining the PID 8- & a g*"’ z=5 By A-12 2=6
distribution spectra relative to each | B | - i z=6 sof
interval. 6 .............................. ........................... _ 50% B

* | evaluatedthe FoM for the adjacent N | ) sof sof
element pairs (Z threshold) and for the ol _________________________ A ____________________ i ot 2o}
adjacent most abundant isotopic pairs | | , ] PN of
of a given Z (A threshold). 0 500 1000 1500 2000 5 e

QH1 [ADC units]

» The energy threshold is determined as
the energy above which the two peaks
have a FoM > 0,7.
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Breakup of the QP

Projectile

LF

-100-150 fmic

« Breakup or dynamicalfission: fast, asymmetricand anisotropic fission process with a time scale of 200-300

fm/c

Different from statistical fission, a de-excitation process taking place in longer time scales and characterised by isotropic

angular distribution

* A possibleinterpretation of the phenomenon
QP, QT separate featuring a strong deformation and angular momentum

*  Prompt breakup

Formation of a Light Fragment (form the neck side)and a Heavy Fragment-> asymmetric

» Fastprocess
* LF emittedtowards CM -> anisotropic

* Isospinequilibration also between the two breakup fragments
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