DE LA RECHERCHE À L'INDUSTRIE

Fission Studies with VAMOS and FALSTAFF Spectrometers

Indu Jangid, Doctoral Student

Supervisors: Diego Ramos, Jean-Eric Ducret, Dore Diane

GANIL Colloque 2023 29 September, 2023

Introduction

Experimental Setup

VAMOS Analysis

FALSTAFF Analysis

Conclusions

Introduction

- Microscopic (dynamic)
- Scission point (statistical)
- Entrance channels (fissioning system):

Atomic number, mass number, excitation energy and angular momentum.

Exit channels (fission fragments):

Atomic number, mass number, isotopic yields, scission point configuration (total TKE and TXE), and neutron multiplicity.

Motivation

Inverse kinematics

Allows the direct measurement of nuclear charge.

²³⁸U (5.88 MeV/A) + ²⁷Al \rightarrow ²⁶⁵Db (E* = 62 MeV) ²³⁸U (5.88 MeV/A) + ⁹Be \rightarrow ²⁴⁷Cm (E* = 43 MeV)

Study the fission dynamics of exotic minor actinides using both VAMOS and FALSTAFF spectrometers

• Atomic number, mass number, isotopic yields, scission point configuration (TKE and TXE), and neutron multiplicity

Experimental Setup

Reconstruction Method

Reconstruction Method

7

Mass Identification

Mass Identification

Charge Identification

FALSTAFF

FALSTAFF Analysis

Correlations

13

Conclusions and perspectives

- Two fission fragments can be measured simultaneously at one time (VAMOS + <u>FALSTAFF</u>).
- Full identification of fragments have been done in VAMOS, in terms of charge, mass number, charge states, and velocity vector .
- The mass distribution shows asymmetric fission, suggesting the multichance fission.
- This measurement demonstrates the Energy loss profile of the axial ionization chamber will be useful to identify the different nuclear charges in direct kinematics in the future.
- Further analysis is going on, where the mass of the second fragment (FALSTAFF), as well as neutron evaporation will be determined, and this will provide the excitation energy of fission fragments.

D. Ramos,¹ J-E. Ducret,¹ D.Dore,² A. Lemasson,¹ M. Rejmund¹ , VAMOS and FALSTAFF collobration

¹GANIL, CEA/DRF-CNRS/IN2P3, B.P. 55027, 14076 Caen, France ²CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France

