Colloque GANIL 2023 Soustons, France

Duer, M., et al. Nature 606, 678–682 (2022)

Observation of a correlated free four-neutron system and future perspectives

+++ Accepted RIBF proposal, SAMURAI74 Kenjiro Miki & Meytal Duer

Stefanos Paschalis

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Bundesministerium für Bildung und Forschung

Science and Technology Facilities Council

Observation of a correlated free four-neutron system

Duer, M., et al. Nature 606, 678–682 (2022)

Head of Media Relations | The University of York

Thanks for the summary; it is quite a tricky one for a lay person to grasp.....

Access & Cit

56k

..... what they might be able to tell us **about the 'Big Bang', so** can your findings contribute to that conversation for example?

Article Accesses

Nuclear landscape

Light nuclei

Nuclear landscape

Light nuclei

Nuclear Forces

A 60-year quest of multi-neutron systems

Experimental work – throughout the decades

Experimental work

Theoretical calculations

Binding Energy of a Neutron Gas

K. A. BRUECKNER University of California, La Jolla, California

JOHN L. GAMMEL Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

JOSEPH T. KUBIS Princeton University, Princeton, New Jersey (Received December 28, 1959)

We conclude that a neutron gas is not bound at any density....

NONEXISTENCE OF THE TETRANEUTRON*

Y. C. Tang and B. F. Bayman

School of Physics, University of Minnesota, Minneapolis, Minnesota (Received 17 June 1965)

Here again, we find that there is neither a bound nor a resonant 4n system.

Theoretical calculations

VOLUME 90, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending 27 JUNE 2003

FIG. 1 (color online). Energies of 4n in external wells versus the well-depth parameter V_0 .

Steven C. Pieper*

Regarding a bound ⁴n:

"... our current very successful understanding of nuclear forces would have to be severely modified in ways that, at least to me, are not at all obvious."

Regarding a ⁴n resonance state:

"This suggests that there might be a ⁴n resonance near 2 MeV, but since the GFMC calculation with no external well shows no indication of stabilizing at that energy, the resonance, if it exists at all, must be very broad. In any case, the AV18/IL2 model does not produce a bound ⁴n."

Theoretical calculations, resonance or not?

(3n) Lazauskas, PRC 71 (2005) 044004 : 3NF
(4n) Lazauskas, PRC 72 (2005) 034003 : 4NF
(3,4n) Hiyama, PRC 93 (2016) 044004 : 3NF(T = 3/2)

Shirokov, PRL 117 (2016) 182502 Gandolfi, PRL 118 (2017) 232501 Fossez, PRL 119 (2017) 032501 Li, PRC 100 (2019) 054313

Deltuva, PRL 123 (2019) 069201 Deltuva, PRC 100 (2019) 044002 Ishikawa, PRC 102 (2020) 034002

Deltuva, PLB 782 (2018) 238 Higgins, PRL 125 (2020) 052501

Lazauskas, PRL 130 (2022) 102501

non-resonant low-energy enhancement

Yes, 3n/4n

No, 3n/4n

of the density of states in the fourneutron spectrum.

non-resonant dineutron-dineutron correlations

"The differences among them must rather be found in the methods used to solve the few-nucleon problem and/or in the way they access the few-neutron continuum": Eur. Phys. J. A (2021) 57:105

Latest Experimental work

SAMURAI at RIBF/RIKEN

"Observation of a correlated free four-neutron system" Duer, M., et al. Nature **606**, 678–682 (2022)

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

Reconstruct the energy of the **missing mass** of the ⁴n system through the precise measurement of the charge particles involved in the reaction (p, α).

Basic principle: Don't touch the neutrons !

Quasi-elastic scattering of α in ⁸He

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

⁸He a good starting point to populate a 4n system. Highest possible A/Z=4.
 Well-formed α cluster. Large overlap < ⁸He | α ⊗ 4n >

Indeed, large alpha SF reported by L.V. Chulkov et al., NPA 759, 43 (2005)

Tetrahedral configurations

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

⁸He a good starting point to populate a 4n system. Highest possible A/Z=4.
< α ⊗ 4n | ⁸He > → < α ⊗ 4n | \hat{O} | ⁸He > involves a transition operator

Two of the three most probable configurations found in ⁸He can be associated with a ⁴n system. The probability for each of them is approx. 30%. M.V. Zhukov, PRC 50, R1 (1994) "Sudden removal of the α -particle from ⁸He" The exact case of interest is studied within the COSMA model.

L.V. Grigorenko et al., EPJA 19, 187 (2004)

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

⁸He a good starting point to populate a 4n system. Highest possible A/Z=4.
< α ⊗ 4n | ⁸He > → < α ⊗ 4n | \hat{O} | ⁸He > involves a transition operator

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

 \succ (p, α) elastic scattering data is well known.

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

> Helium beams allow for a "control case" to be employed ${}^{6}He(p,p\alpha)^{2}n$!!

Results: Missing-mass spectra

"Observation of a correlated free four-neutron system" Duer, M., *et al. Nature* **606**, 678–682 (2022)

Results: Missing-mass spectra

"Observation of a correlated free four-neutron system" Duer, M., *et al. Nature* **606**, 678–682 (2022)

Comparison of experimental results with theory predictions

- No-Core Shell Model (**NCSM**) PRL 117, 182502 (2016)
- No-Core Gamow Shell Model (**NCGSM**) PRC 100, 054313 (2019) PRL 119, 032501 (2017) (where the blue arrow indicates that the width is predicted to be larger than 3.7 MeV)
- Quantum Monte Carlo (QMC)
 PRL 118, 232501 (2017)

UNIVERSITY

"Low Energy Structures in Nuclear Reactions with 4n in the Final State"

Lazauskas, PRL 130 (2023) 102501

"We show that these experimental results find a natural explanation in terms of the **dineutron correlations in the final state**, if the four neutrons are weakly bound in the initial projectile, forming a broad wave function."

strong sensitivity of the response function to the neutrons' initial distribution inside ⁸He

Dependency on how we populate & how we measure four neutrons

Requires two-dineutron correlations as well as the presence of pre-existing twodineutron clusters in the initial ⁸He state

Measuring the relative momentum amongst the neutrons should help resolve this

 \rightarrow New experiment

Accepted RIBF proposal SAMURAI74 (Kenjiro Miki & Meytal Duer)

- ⁸He(p, pα)4n
- ⁶He(p, 3p)4n and ⁸He(p, 3p)6n
- complementary reactions & 4n in coincidence for direct relative momentum measurement

Accepted **GANIL** proposal The tetra-neutron Isobaric Analog State in ⁴H (Augusto Macchiavelli & Marlène Assié)

Populate the IAS of the n^4 in ⁴H via the ⁶He(p,³He)⁴H reaction

ΔT =0,1 changes are allowed

Selective ³He + p (from ⁴H decay) trigger due to isospin selection rules

- LISE beam line
 - CATS multiwire proportional chambers
 - MUGAST array covering from 5 to 30 degrees
 - Additional MUST2 detector at 0 degree

Summary and Conclusions

> experimental observation of a four-neutron resonance-like structure near threshold.

> ⁸He beam and a quasi-elastic (p,pa) reaction at large momentum transfer in inverse kinematics enabled access to the ⁴n system in a recoil-less way.

> The finely tuned experimental apparatus (SAMURAI setup) and the high intensity radioactive beams provided by RIBF enabled a high-resolution measurement yielding a low-energy peak with a statistical significance well beyond the 5σ level.

> Next generation experiments approved - where four neutron system is accessed in different ways and where all four neutrons are detected in coincidence.

elaborate nuclear theories accounting fully for the effect of the continuum and modelling the exact nuclear reaction are essential to understand the observed low-energy peak.

Observation of a correlated free four-neutron system

M. Duer,^{1,*} T. Aumann,^{1,2,3} R. Gernhäuser,⁴ V. Panin,^{5,2} S. Paschalis,^{6,1} D. M. Rossi, N. L. Achouri,⁷ D. Ahn,⁵ H. Baba,⁵ C. A. Bertulani,⁸ M. Böhmer,⁴ K. Boretzky,² C. Caesar,^{1, 2, 5} N. Chiga,⁵ A. Corsi,⁹ D. Cortina-Gil,¹⁰ C. A. Douma,¹¹ F. Dufter,⁴ Z. Elekes,¹² J. Feng,¹³ B. Fernández-Domínguez,¹⁰ U. Forsberg,⁶ N. Fukuda,⁵ I. Gasparic,^{14,1,5} Z. Ge,⁵ J. M. Gheller,⁹ J. Gibelin,⁷ A. Gillibert,⁹ K. I. Hahn,^{15,16} Z. Halász,¹² M. N. Harakeh,¹¹ A. Hirayama,¹⁷ M. Holl,¹ N. Inabe,⁵ T. Isobe,⁵ J. Kahlbow,¹ N. Kalantar-Nayestanaki,¹¹ D. Kim,¹⁶ S. Kim,^{16,1} T. Kobayashi,¹⁸ Y. Kondo,¹⁷ D. Körper,² P. Koseoglou,¹ Y. Kubota,⁵ I. Kuti,¹² P. J. Li,¹⁹ C. Lehr,¹ S. Lindberg,²⁰ Y. Liu,¹³ F. M. Marqués,⁷ S. Masuoka,²¹ M. Matsumoto,¹⁷ J. Mayer,²² K. Miki,^{1,18} B. Monteagudo,⁷ T. Nakamura,¹⁷ T. Nilsson,²⁰ A. Obertelli,^{1,9} N. A. Orr,⁷ H. Otsu,⁵ S. Y. Park,^{15,16} M. Parlog,⁷ P. M. Potlog,²³ S. Reichert,⁴ A. Revel,^{7,9,24} A. T. Saito,¹⁷ M. Sasano,⁵ H. Scheit,¹ F. Schindler,¹ S. Shimoura,²¹ H. Simon,² L. Stuhl,^{16,21} H. Suzuki,⁵ D. Symochko,¹ H. Takeda,⁵ J. Tanaka,^{1,5} Y. Togano,¹⁷ T. Tomai,¹⁷ H. T. Törnqvist,^{1,2} J. Tscheuschner,¹ T. Uesaka,⁵ V. Wagner,¹ H. Yamada,¹⁷ B. Yang,¹³ L. Yang,²¹ Z. H. Yang,⁵ M. Yasuda,¹⁷ K. Yoneda,⁵ L. Zanetti,¹ J. Zenihiro,^{5, 25} and M. V. Zh kov²⁰ ¹Technische Universität Darmstadt, Fachbereich Physik, 64289 Darmstadt, Germany ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany ³Helmholtz Forschungsakademie Hessen für FAIR, Max-von-Laue-Str. 12, 60438 Frankfurt, Germany ⁴ Technische Universität München, Physik Department, 85748 Garching, Genany ⁵RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wake 351-01-8, Japan ⁶Department of Physics, University of York, York YO10 5DD, United Kingdo y ⁷LPC-Caen, IN2P3/CNRS, UniCaen, ENSICAEN, Normandie Université, 400 Casi, France ⁸Department of Physics and Astronomy, Texas A&M University-C., me. e, Converse, TX 75429, USA ⁹IRFU, CEA, Université Paris-Saclay, F-911 Gi, sur-vette France ¹⁰Dpt. de Física de Partículas, Universidade de Santiago de Compos. la, E-1578z Santiago de Compostela, Spain ¹¹Nuclear Energy group, ESRIG, Universit of Coningen, 974. A Groningen, The Netherlands ¹²Atomki, Eötvös Loránd Research Networ. (E KH), P.O. Box 1, H-4001 Debrecen, Hungary ¹³State Key Laboratory of Nuclear Physics and Technology School of Physics, Peking University, Beijing 100871, China ¹⁴Rudin Bos vić 1 stite c. Zagreb, Croatia ¹⁵Ewha W mans Univ. sity, Seoul 03760, Korea ¹⁶Center for Exoti Nu lear Stidies Institute for Basic Science, Daejeon 34126, Korea ¹⁷Department <u>APhysics</u>, Tongo nait te Fechnology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan Dep rtm it of Sysics, Tohoku University, Miyaqi 980-8578, Japan Dep rtm at of Lysic The University of Hong Kong, Pokfulam Road, Hong Kong, China ²⁰Department of mysics, Chalmers University of Technology, 412 96, Göteborg, Sweden Center for Nuclear Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan ²² versitat zu Köln. Institut für Kernphysik, Zülpicher Straße 77, 50937 Köln, Germany ²³Institute of Space Sciences, 077125 Magurele, Romania ²⁴GANIL, CEA/DRF-CNRS/IN2P3, 14076 Caen, France ²⁵Department of Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan

Backup slides

Neutron detection

Events with **one neutron in coincidence** are consistent with expected distributions

⁸He(p,pα)⁴n

⁶He(p,pα)²n

Neutron detection

Events with one detected neutron are consistent with expected distributions

Nuclear Forces

Low Energy Structures in Nuclear Reactions with 4n in the Final State

Lazauskas, PRL 130 (2022) 102501

"complement the analysis of the ⁸He(p, p⁴He)4n reaction, by addressing shortcomings of the COSMA model in three essential ways":

- i. implementing a realistic description of the 8He valence neutron distribution,
- ii. implementing a rigorous dynamics for the four-neutron break-up, and
- iii. considering the interaction between valence neutrons in full extent and retaining consistency between the multineutron Hamiltonians before and after the α -particle removal. We show that

these experimental results find a natural explanation in

terms of the dineutron correlations in the final state, if the four neutrons are weakly bound in the mitial nuclear

projectile, reactions with 4n in the final state"

? Depenterning a broad wave function.

how we produce it & how we measure it

strong sensitivity of the response function to the neutrons' initial distribution inside ⁸He

⁸He(p,pα)⁴n Quasi-Elastic knockout reaction at large momentum transfer

Large momentum transfer minimizes final state interactions between the 4n and the (p, α).

Acknowledgements

DFG, German Research Foundation Project-ID 279384907 - SFB 1245 the GSI-TU Darmstadt cooperation agreement, by the UK STFC under contract numbers ST/P003885/1 and 9 ST/L005727/1 and the University of York Pump Priming Fund, BMBF projects No. 05P15RDFN1, 05P15WOFNA, and 05P15WOCIA, by Project FAIR- RO-04/DEMAND - IFA, by JSPS KAKENHI Grant No. JP16H02177, JP16H02179, and JP18H05404,, by the Spanish Research grant PGC2018-099746-B-C21, and by the Swedish Research Council, project grant 2011-5324 and 2017-03839. IBS grant funded by the Korea government grant No. IBS-R031-D1. acknowledges partial support by the US DOE grant No. DE-FG02- 08ER41533. HIC for FAIR and Croatian Science Foundation under projects No. 1257 and 7194. Z. E., Z. H., by NKFIH grants No. 114454, 128947 and GINOP-2.3.3-15-2016-00034

Bundesministerium für Bildung und Forschung

Science and Technology Facilities Council

Structure of ⁸He

COSM + Gamow

alpha + 4n, like with COSM, but using **Gamow** basis, continuum coupling etc.. Shows enhanced probability to find the four neutrons at the same side

G. Papadimitriou, private communication

...(COSM + Gamow) is a pure structure method. It is not the decay of 4 neutrons from ⁸He. We need appropriate many-body scattering boundary conditions for this. However, there is indeed a correlation, but we cannot say if there is a preformataion amplitude before decay. The calculations for this plot is from phenomenological COSM + Gamow basis model using а central interaction (Minnesota). Calculations for the 4n with Robert is from ab-initio using realistic interactions...

Relevant to G. Papadimitriou et al., PRC 84, 051304(R) (2011), and his PhD Thesis