Shape coexistence

studied with Coulomb excitation and AGATA

Magda Zielińska

 superdeformation in ⁴²Ca: K. Hadyńska-Klęk *et al.*, Phys. Rev. Lett. 117 (2016) 062501
 K. Hadyńska-Klęk *et al.*, Phys. Rev. C 97 (2018) 024326

- shape coexistence in ¹⁰⁶Cd:
 D. Kalaydjieva, PhD thesis, Université Paris-Saclay, 2023
- multiple shape coexistence in ¹¹⁰Cd and ⁷⁴Se: data under analysis (HIL Warsaw, CEA Saclay)

Shape coexistence

K. Heyde and J. Wood, Rev. Mod. Phys. 83, 1467 (2011)

 appearance of states characterised by different shapes closely lying in energy

• proposed mechanism: gain from correlations offsets the shell gap and multiparticle-multihole excitations go down in excitation energy

• effect increases towards mid shell – characteristic parabolic behaviour of intruder states energies

• depends on a delicate balance of macroscopic, liquid-drop-like properties of the nuclear matter and microscopic shell effects – provides stringent tests of modern nuclear structure models

Shape coexistence

Ζ 82 50 40 28 20 8

82

126

• a widespread phenomenon in areas close to proton and neutron shell closures

• difficult to establish experimentally as nuclear shape is not an observable

20 28

8

40 50

• Coulomb excitation: perfect tool to study shape coexistence as it is the only technique sensitive to charge distribution in excited nuclear states

Ν

Coulomb excitation

• population of excited states via purely electromagnetic interaction between the collision partners in the process of quasi-elastic scattering

• we observe gamma-ray decay of Coulombexcited states in coincidence with scattered beam ions or target recoils

• the decay intensities, measured as a function of particle scattering angle, are related to reduced transition probabilities and spectroscopic quadrupole moments determined via a multidimensional fit performed using dedicated analysis codes (e.g. GOSIA)

• they are related to the nuclear shape and collectivity – from extensive sets of E2 matrix elements quadrupole invariants can be formed in order to deduce deformation parameters for individual states defined in the intrinsic frame of the nucleus

AGATA

- new-generation gamma-ray tracking array developed by a collaboration involving 13 countries and over 40 institutions
- currently at LNL after campaigns at GANIL and GSI
- angular resolution: $\sim 1^{\circ}$
- large inner radius to accommodate ancillary devices
- final configuration: 180 segmented crystals (60 ATC), 35% efficiency

http://www.agata.org

S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012).

Part I: AGATA Demonstrator at LNL

superdeformation in ⁴²Ca

Colloque GANIL, Soustons, September 25-29, 2023 - p. 6/28

Highly-deformed structures in the A \sim 40 region

 spherical and highly-deformed magic numbers appear at similar particle numbers – dramatic shape coexistence

Identification of 4p-4h and 8p-8h structures in ⁴⁰Ca

R. Middleton et al, Phys. Lett. 39B (1972) 339

High-spin spectroscopy around ⁴⁰Ca

 intense transitions linking very deformed structures to ground-state bands – mixing of configurations

Coulomb excitation of ⁴²Ca at LNL

- Targets: ²⁰⁸Pb, ¹⁹⁷Au, 1mg/cm²
- AGATA: 3 triple clusters
- DANTE: 3 MCP detectors, θ range: 100-144°

6+

- first population of a superdeformed band in Coulomb excitation
- measured quadrupole moment of 2^+_2 corresponds to $\beta = 0.48(14)$

K. Hadyńska-Klęk et al, PRL 117 (2016) 062501

Comparison with theoretical calculations

K. Hadyńska-Klęk, PRL 117 (2016) 062501

- Large-Scale Shell Model: F.Nowacki, H.Naïdja, B.Bouthong (Strasbourg)
- Beyond Mean Field calculations with Gogny D1S: T. R. Rodriguez (Madrid)

Shape parameters of 0⁺ and 2⁺ states in ⁴²Ca

K. Hadyńska-Klęk, PRC 97 (2018) 024326

- deformation parameters:
 - side band: $\bar{\beta}$ =0.43(4), $\bar{\gamma}$ =13(6)°
 - ground-state band: $\bar{\beta}$ =0.26(2), $\bar{\gamma}$ =29(2)° (?)
- are these static deformations, or fluctuations?
 - what about softness in β : $\sigma(Q^2) = \sqrt{\langle Q^4 \rangle \langle Q^2 \rangle^2}$?

Shape parameters of 0⁺ and 2⁺ states in ⁴²Ca

 $\sigma(Q^2)$ comparable with $\langle Q^2 \rangle$ for the ground-state band

 \rightarrow fluctuations about a spherical shape; $\langle \cos(3\delta) \rangle$ =0 resulting from averaging over all possible quadrupole shapes ranging from prolate to oblate

excited band: $\sigma(Q^2)$ few times lower than $\langle Q^2 \rangle$

ightarrow static deformation

Comparison with theoretical calculations

K. Hadyńska-Klęk, PRL 117 (2016) 062501

- coexistence of two very different structures reproduced by both theories, slightly triaxial SD minimum present in both potential maps
- deformation in the ground-state band increases with spin contrary to theoretical predictions \rightarrow mixing seems to be underestimated by calculations

Part II: AGATA at GANIL

shape coexistence in ¹⁰⁶Cd

Colloque GANIL, Soustons, September 25-29, 2023 - p. 15/28

Shapes of Cd nuclei – context

- departure from the surface-vibration paradigm towards a multiple shape-coexistence scenario
- decisive arguments: β-decay study (8π, TRIUMF)
 + DSAM lifetime measurements (Kentucky)
 in ^{110,112}Cd with guidance from beyond-mean-field calculations (P.E. Garrett et al, Phys. Rev. Lett. 123, 142502 (2019)
- triggered a multitude of new measurements:
 - high-precision beta decay into ¹¹⁰Cd (GRIFFIN, TRIUMF 2022)
 - Coulomb excitation of ¹¹⁰Cd (AGATA, LNL; GRETINA, ANL 2022)
- also for neighbouring nuclei, in particular ¹⁰⁶Cd:
 - Coulomb excitation of ¹⁰⁶Cd: (ReA3, MSU D. Rhodes et al, Phys. Rev. C 103, L051301 (2021); GRETINA, ANL – T. Gray et al, Phys. Lett. B 834, 137446 (2022))
 - RDDS lifetime measurement in ^{102–108}Cd: (AGATA, GANIL M. Siciliano et al, Phys. Rev. C 104, 034320 (2021)

Experiment

 inelastic scattering data on ¹⁰⁶Cd: byproduct of a RDDS lifetime measurement following multinucleon transfer in the ¹⁰⁶Cd + ⁹²Mo reaction at 7 MeV/A

M. Siciliano et al., Phys. Lett. B 806, 135474 (2020)M. Siciliano et al., Phys. Rev. C 104, 034320 (2021)

 VAMOS at grazing angle (25°); lowest observed scattering angle (19.4°) corresponding to 107% of Cline's safe energy

Experiment

population of 21 excited states observed (up to spin 6⁺)

- ¹⁰⁶Cd ions identified in VAMOS with 19.4° $\leq \theta_{LAB} \leq 30^{\circ}$ (Cline's criterion fulfilled for $\theta_{LAB} \leq 18^{\circ}$)
- we apply gates on θ_{LAB} with 1° width to study the dependence of the excitation cross sections on scattering angle
- due to complicated acceptance of the spectrometer as a function of θ, we normalise the measured γ-ray intensities to that of the 2⁺₁ → 0⁺₁ transition

- reasonable agreement with literature data for 4⁺₁ (weighted average of measured lifetimes)
- lifetime of the 6⁺₂ state deduced from the same data as our transition intensities (M. Siciliano et al., Phys. Rev. C 104, 034320 (2021) is not consistent with the measured intensity ratios

D. Kalaydjieva, PhD thesis, 2023

• much better agreement for the 6^+_2 state if we assume:

- (6⁺₂ ||E2||4⁺₁) matrix element from Coulomb excitation (D. Rhodes et al., Phys. Rev. C 103, L051301 (2021))
- or 6_2^+ lifetime from $(n,n'\gamma)$ (A. Linnemann, PhD thesis, University of Cologne, 2005 but here the uncertainty is very large ($\tau = 0.26^{+0.44}_{-0.14}$ ps)

D. Kalaydjieva, PhD thesis, 2023

 finally, we can try to fit a set of matrix elements to the first few points of the cross-section distribution, and compare the resulting lifetimes:

```
4_1^+ – GOSIA fit: 1.23(7) ps
weighted average of lifetimes:
1.32(12) ps
```

6⁺₂ – GOSIA fit: 0.48(3) ps M. Siciliano et al., Phys. Rev. C 104, 034320 (2021): 1.22(15) ps D. Rhodes et al., Phys. Rev. C 103, L051301 (2021): 0.54(8) ps

- similar analysis has been applied to all observed states, yielding B(E2) values complementary to those obtained from the RDDS analysis of the same date
- contrary to RDDS, it was possible to obtain B(E2) values for the decay of states that have lifetimes shorter than 1 ps

D. Kalaydjieva, PhD thesis, 2023

Shape coexistence in Cd isotopes: BMF predictions

- similar shape-coexisting structures as in ^{110,112}Cd are predicted in ¹⁰⁶Cd
- in-band transition strength in the oblate structure predicted to increase with decreasing N, while the B(E2; $0_3^+ \rightarrow 2_2^+$) value decreases

SCCM calculations: T.R. Rodriguez

Unsafe Coulomb-excitation results

- decay of the presumably oblate 0⁺₃ state agrees well with the SCCM prediction, but the in-band transition strength has a very different trend
- larger B(E2; 2⁺₅ → 0⁺₃) (similar to that in the ground-state band) if the branching ratio from A. Linnemann PhD (Cologne, 2005) is assumed instead of the more precise value from T. Schmidt PhD (Cologne, 2019)

¹⁰⁶Cd: D. Kalaydjieva, PhD thesis, 2023

Present and future: AGATA at LNL

multiple shape coexistence in ¹¹⁰Cd, ⁷⁴Se, ...

Colloque GANIL, Soustons, September 25-29, 2023 - p. 25/28

5 days of ⁵⁸Ni beam with AGATA in 2022, complementary measurements at HIL Warsaw

data analysis: I. Piętka, K. Wrzosek-Lipska, HIL Warsaw

Shapes in ⁷⁴Se

- two interpretations:
 - prolate-oblate shape coexistence (0⁺₁, 0⁺₂ states)
 - weakly deformed vibrational (ground-state band, 0⁺₂) coexisting with well deformed states (0⁺₃, 2⁺₄)

¹²⁰Sn and ²⁰⁸Pb targets used to enhance sensitivity to the $0^+_3 \rightarrow 2^+_4$ excitation path

data analysis: R. Kjus, MZ, CEA Saclay

Summary

- large static deformation of β(0⁺₂)=0.43(4) and β(2⁺₂)=0.45(4) is consistent with the superdeformed character of the side band in ⁴²Ca
- (cos(3δ)) obtained for the 0⁺₂ state in ⁴²Ca brings the first experimental evidence for the non-axial character of SD structures in the A~40 mass region
- we obtained new experimental information on the presumably oblate 0⁺₃ and 2⁺₅ states in ¹⁰⁶Cd
- we populated structures built on the 0⁺₁, 0⁺₂ and 0⁺₃ states in ¹¹⁰Cd and ⁷⁴Se and on this basis will address the question of multiple shape coexistence in these nuclei

