# Cross-shell interactions at the N = 28 shell closure through ${}^{47}K(d,p\gamma)$ and ${}^{47}K(d,t\gamma)$ with MUGAST+AGATA+VAMOS

Charlie J. Paxman (University of Surrey) + e793s collaboration





Far from stability, magic numbers change due to relative shifting of orbital energies [1].

[1] T. Otsuka *et al.* Rev. Mod. Phys. **92**, 015002 (2020)

C. J. Paxman

| 48 <b>SC</b>                         | <sup>49</sup> Sc | 50SC                        |                       |                       |                           |                           |                          |                                      |                      |
|--------------------------------------|------------------|-----------------------------|-----------------------|-----------------------|---------------------------|---------------------------|--------------------------|--------------------------------------|----------------------|
| 47 <b>Ca</b><br>4.536 d              |                  | <sup>49</sup> Ca<br>8.718 m | <sup>50</sup> Ca      | <sup>51</sup> Ca      | <sup>52</sup> Ca          | 53 <b>Ca</b>              | 54 <b>Ca</b><br>90 ms    | <sup>55</sup> Ca<br><sub>22 ms</sub> | Z=20                 |
| 46 <b>K</b><br>96.3 s                | 47K<br>17.385    | 48 <b>K</b><br>6.83 s       | 49 <b>K</b><br>1.26 s | 50 <b>K</b><br>472 ms | <sup>51</sup> K<br>365 ms | <sup>52</sup> K<br>110 ms | <sup>53</sup> K<br>30 ms | <sup>54</sup> K                      | -                    |
| 45 <b>Ar</b><br>21.48 s              |                  | <sup>47</sup> Ar<br>123 s   |                       |                       |                           |                           |                          |                                      |                      |
| 44 <b>CI</b><br>562 ms               |                  | 46 <b>CI</b><br>232 ms      |                       |                       |                           |                           |                          |                                      |                      |
| 43 <b>S</b><br>265 ms                |                  | 45 <b>S</b><br>68 ms        |                       |                       |                           |                           |                          |                                      |                      |
| <sup>42</sup> P<br>48.5 ms           |                  | 44 <b>P</b><br>18.5 ms      |                       |                       |                           |                           |                          |                                      |                      |
| <sup>41</sup> Si<br><sup>20 ms</sup> |                  | <sup>43</sup> Si<br>30 ms   |                       |                       | -                         | 3                         | Log of<br>-1.5           | Half-life<br>0                       | e[s]<br>1.5 3        |
| 40<br>10 ms                          |                  | <sup>42</sup> AI<br>3 ms    |                       |                       |                           | 🗌 Esti                    | mated                    |                                      | Unknown              |
| <sup>39</sup> Mg                     |                  | <sup>41</sup> Mg            |                       | Edi                   | ted ima                   | ge based                  | d on "Tl                 | he Colo                              | urful Nuclide Chart" |
| N                                    | =2               | 28                          |                       | peo<br>edw            | vard.sim                  | sics.anu<br>ipson@        | anu.edu                  | v~ecs10<br>1.au                      | ISI CHART            |

## Shell Evolution

Far from stability, magic numbers change due to relative shifting of orbital energies.

Predicted that N = 28 gap weakens, N = 32, 34 gaps emerge [2].

[2] T. Otsuka *et al*. Phys. Rev. Lett. **87**, 082502 (2001)

|                       | <sup>56</sup> SC<br>26 ms | 55 <b>SC</b><br>96 ms     | 54 <b>SC</b><br>526 ms     | <sup>53</sup> Sc<br>24s | <sup>52</sup> Sc<br>82 s | <sup>51</sup> SC<br>12.4s | <sup>50</sup> Sc<br>102.5 s          | <sup>49</sup> SC<br>57.18m  | 48 <mark>50</mark><br>43.67 h        |
|-----------------------|---------------------------|---------------------------|----------------------------|-------------------------|--------------------------|---------------------------|--------------------------------------|-----------------------------|--------------------------------------|
| Z=20                  | 55 <b>Ca</b><br>22 ms     | <sup>54</sup> Ca<br>90 ms | <sup>53</sup> Ca<br>461 ms | <sup>52</sup> Ca        | 51 <b>Ca</b>             | 50 <b>Ca</b><br>13.45 s   | <sup>49</sup> Ca<br>8.718 m          | <sup>48</sup> Ca            | 47 <b>Ca</b><br>4536 d               |
|                       |                           |                           |                            |                         |                          |                           | 48 <b>K</b><br>6.83 s                | 47 <b>K</b><br>17.38 s      | 46K<br>96.3 s                        |
|                       |                           |                           |                            |                         |                          |                           | <sup>47</sup> Ar<br>1.23 s           | 46 <b>Ar</b><br>8.4 s       | 45 <b>Ar</b><br>21.48 s              |
|                       |                           |                           |                            |                         |                          |                           | 46 <b>CI</b><br>232 ms               | 45 <b>Cl</b><br>413 ms      | 44 CI<br>562 ms                      |
|                       |                           |                           |                            |                         |                          |                           | 45 <b>S</b><br>68 ms                 | 44 <b>S</b><br>100 ms       | <sup>43</sup> S<br>265 ms            |
|                       |                           |                           |                            |                         |                          |                           | 44 <b>P</b><br>18.5 ms               | 43 <b>P</b><br>35.8 ms      | <sup>42</sup> P<br>48.5 ms           |
| e [s]<br>1.5 3        | Half-life<br>0            | Log of<br>-1.5            | 3                          | -                       |                          |                           | <sup>43</sup> Si<br><sup>30 ms</sup> | <sup>42</sup> Si<br>12.5 ms | <sup>41</sup> Si<br><sup>20 ms</sup> |
| Unknown               |                           | mated                     | 🗌 Esti                     |                         |                          |                           | <sup>42</sup> AI<br>3 ms             |                             | 40AI<br>10 ms                        |
| ourful Nuclide Chart" | he Colo                   | d on "Tl                  | ge base                    | ted imag                | Edi                      |                           | <sup>41</sup> Mg                     | 40 <b>Mg</b>                | <sup>39</sup> Mg                     |
| 03/chart              | 1/~ecs1(<br>1.au          | ı.edu.au<br>anu.edu       | sics.anu<br>vpson@         | ple.phys<br>vard.sim    | peo<br>edw               |                           |                                      |                             | N                                    |

C. J. Paxman

**∠ U** 

### Shell Evolution

Far from stability, magic numbers change due to relative shifting of orbital energies.

Predicted that N = 28 gap weakens, N = 32, 34 gaps emerge.

• Deformation at N = 28, Z<20 [3].

[3] H.L. Crawford *et al*. Phys. Rev. Lett **122**, 052501 (2019)



## Shell Evolution

Far from stability, magic numbers change due to relative shifting of orbital energies.

Predicted that N = 28 gap weakens, N = 32, 34 gaps emerge.

- Deformation at N = 28, Z<20.
- Doubly-magic <sup>52,54</sup>Ca from E(2<sub>1</sub><sup>+</sup>)
  [4].

[4] D. Steppenbeck *et al*. Nature **502**, 207 (2013)









Selective (d,p) reaction



Edited image based on "The Colourful Nuclide Chart people.physics.anu.edu.au/~ecs103/chart edward.simpson@anu.edu.au

C. J. Paxman

GANIL Colloque 2023, Soustons

N=28



C. J. Paxman

ν

π

<sup>47</sup>K



edward.simpson@anu.edu.au

#### GANIL Colloque 2023, Soustons



C. J. Paxman

GANIL Colloque 2023, Soustons



GANIL Colloque 2023, Soustons

Methodology

SPIRAL1+  $^{47}$ K RIB @ 7.7MeV/u.  $5 \times 10^5$  pps,  $10^{-4}$  mass res.  $\rightarrow$  pure beam

TARGET 0.31(2) mg/cm<sup>2</sup> CD<sub>2</sub>



## Methodology

SPIRAL1+  ${}^{47}$ K RIB @ 7.7MeV/u.  $5 \times 10^5$  pps,  $10^{-4}$  mass res.  $\rightarrow$  pure beam

TARGET 0.31(2) mg/cm<sup>2</sup> CD<sub>2</sub>

VAMOS++ Zero degree; fast counting **Recoil timing** & reject C reactions



### Methodology

SPIRAL1+

<sup>47</sup>K RIB @ 7.7MeV/u.  $5 \times 10^5$  pps,  $10^{-4}$  mass res. → pure beam

TARGET 0.31(2) mg/cm<sup>2</sup> CD<sub>2</sub>

VAMOS++

Zero degree; fast counting **Recoil timing** & reject C reactions

MUGAST Light ejectile detection FWHM  $\approx$  300 keV in <sup>48</sup>K excitation.



### Methodology

SPIRAL1+

<sup>47</sup>K RIB @ 7.7MeV/u.  $5 \times 10^5$  pps,  $10^{-4}$  mass res. → pure beam

TARGET 0.31(2) mg/cm<sup>2</sup> CD<sub>2</sub>

VAMOS++

Zero degree; fast counting **Recoil timing** & reject C reactions

MUGAST

**Light ejectile** detection FWHM  $\approx$  300 keV in <sup>48</sup>K excitation.

#### AGATA

**Prompt γ-ray** emissions 16 ATC's @ 18 cm Pulse shape analysis, add-back & DC FWHM  $\approx$  7 keV @ 1.8 MeV;  $\beta$  = 0.16



### Methodology

SPIRAL1+ <sup>47</sup>K RIB @ 7.7MeV/u.  $5 \times 10^5$  pps,  $10^{-4}$  mass res.  $\rightarrow$  pure beam

TARGET  $0.31(2) \text{ mg/cm}^2 \text{ CD}_2$ 

#### VAMOS++

Zero degree; fast counting **Recoil timing** & reject C reactions

#### MUGAST

Light ejectile detection FWHM  $\approx$  300 keV in <sup>48</sup>K excitation.

### AGATA

**Prompt y-ray** emissions 16 ATC's @ 18 cm Pulse shape analysis, add-back & DC FWHM  $\approx$  7 keV @ 1.8 MeV;  $\beta$  = 0.16



C. J. Paxman

GANIL Colloque 2023, Soustons

## MUGAST & VAMOS++



Unambiguous kinematic selection of reaction channel (d,d) elastic scattering provides internally consistent normalisation. (d,tγ) transfer allows for neutron hole investigation.

| J. Paxman | GANIL Colloque 2023, Soustons |
|-----------|-------------------------------|
|-----------|-------------------------------|

## MUGAST & VAMOS++



Unambiguous kinematic selection of reaction channel (d,d) elastic scattering provides internally consistent normalisation. (d,tγ) transfer allows for neutron hole investigation.

C. J. Paxman GANIL Colloque 2023, Soustons 5/16

## MUGAST & VAMOS++



Unambiguous kinematic selection of reaction channel (d,d) elastic scattering provides internally consistent normalisation. (d,tγ) transfer allows for neutron hole investigation.

| C. J. Paxman | GANIL Colloque 2023, Soustons   |
|--------------|---------------------------------|
|              | Official Conoque 2025, Soustons |

## MUGAST & AGATA & VAMOS++



C. J. Paxman

GANIL Colloque 2023, Soustons

## MUGAST & AGATA & VAMOS++



C. J. Paxman

## MUGAST & AGATA & VAMOS++



## MUGAST & AGATA & VAMOS++



p-γ Coinc.

Precise determination of state energies.

Construction of level scheme.

Clear isolation of specific states.









C. J. Paxman

GANIL Colloque 2023, Soustons





### Angular Distributions

- Discriminate between p-wave (L=1) and fwave (L=3) transfer by differential cross section
- Comparison to data provides unambiguous L-transfer assignment



#### Angular Distributions

- Discriminate between p-wave (L=1) and fwave (L=3) transfer by differential cross section
- Comparison to data provides unambiguous L-transfer assignment
- Scaling factor between exp. and theory represents strength of population
  - Spectroscopic factor





C. J. Paxman

3.868 3.792

3.601

**3.254** 

2.908

2.407

Distinct regions of **p-wave** states and **f-wave** states.

**p-wave:** p<sub>1/2</sub>, p<sub>3/2</sub> **f-wave:** f<sub>5/2</sub>

Preliminary results suggest **mixed state** between the two regions.





C. J. Paxman

GANIL Colloque 2023, Soustons

γ-ray transitions + ...



C. J. Paxman

GANIL Colloque 2023, Soustons

#### Results Cross-shell interaction at N=28

### γ-ray transitions + L-transfers + ...





Results Cross-shell interaction at N=28

y-ray transitions + L-transfers + spectroscopic factors (vs. theory) = ...





Results Cross-shell interaction at N=28

 $\gamma$ -ray transitions + L-transfers + spectroscopic factors (vs. theory) = state spin ( $J^{\pi}$ ) + ...


Results Cross-shell interaction at N=28

 $\gamma$ -ray transitions + L-transfers + spectroscopic factors (vs. theory) = state spin ( $J^{\pi}$ ) + structure





Results Cross-shell interaction at N=28







Shell model fails to predict 1- ground state.



Shell model fails to predict 1- ground state. Measured p-wave & f-wave states have smaller gap than theory

11/16



Shell model fails to predict 1- ground state.

Measured **p-wave** & **f-wave** states have smaller gap than theory

• Suggests fp orbital spacing reduced



Shell model fails to predict 1- ground state.

Measured **p-wave** & **f-wave** states have smaller gap than theory

- Suggests fp orbital spacing reduced
- Implications for N=34?





Shell model fails to predict 1- ground state.

Measured **p-wave** & **f-wave** states have smaller gap than theory

- Suggests fp orbital spacing reduced
- Implications for N=34?

Measured spectroscopic factors consistently smaller than predicted.





Shell model fails to predict 1- ground state.

Measured **p-wave** & **f-wave** states have smaller gap than theory

- Suggests fp orbital spacing reduced
- Implications for N=34?

Measured spectroscopic factors consistently smaller than predicted.



11/16



Shell model fails to predict 1- ground state.

Measured **p-wave** & **f-wave** states have smaller gap than theory

- Suggests fp orbital spacing reduced
- Implications for N=34?

Measured spectroscopic factors consistently smaller than predicted.



Results Cross-shell interaction at N=28



#### Collected simultaneous data for **adding** and **removing** a neutron.

C. J. Paxman GANIL Colloque 2023, Soustons 12/16

Results Cross-shell interaction at N=28



C. J. Paxman

GANIL Colloque 2023, Soustons



#### More well-known nucleus than <sup>48</sup>K.







C. J. Paxman

GANIL Colloque 2023, Soustons

13/16



C. J. Paxman

GANIL Colloque 2023, Soustons











GANIL Colloque 2023, Soustons



GANIL Colloque 2023, Soustons







GANIL Colloque 2023, Soustons

Results Cross-shell interaction at N=28



C. J. Paxman GA









15/16



C. J. Paxman GANIL Colloque 2023, Soustons

15/16



C. J. Paxman



#### Obs. (d,t)

Shell model is limited by small phase space:

• No deep v(d<sub>5/2</sub>)

• No high v(p<sub>1/2</sub>)

No reduction in (d,t) spectroscopic factor, as observed in (d,p).

Small occupation of  $v(p_{3/2})$  ground state suggests **no blocking** of (d,p) transfer.









First experimental measurement of exotic π(s<sub>1/2</sub>)⊗ν(fp) interaction conducted by way of <sup>47</sup>K(d,pγ)<sup>48</sup>K.

- First experimental measurement of exotic π(s<sub>1/2</sub>)⊗ν(fp) interaction conducted by way of <sup>47</sup>K(d,pγ)<sup>48</sup>K.
- Range of **p-wave and f-wave states identified**, each with spin-parity assignments and spectroscopic factors.

- First experimental measurement of exotic π(s<sub>1/2</sub>)⊗ν(fp) interaction conducted by way of <sup>47</sup>K(d,pγ)<sup>48</sup>K.
- Range of **p-wave and f-wave states identified**, each with spin-parity assignments and spectroscopic factors.
- **Preliminary comparison** with shell models; qualitative observations suggest **overestimation of N=34 gap**.

- First experimental measurement of exotic π(s<sub>1/2</sub>)⊗ν(fp) interaction conducted by way of <sup>47</sup>K(d,pγ)<sup>48</sup>K.
- Range of **p-wave and f-wave states identified**, each with spin-parity assignments and spectroscopic factors.
- **Preliminary comparison** with shell models; qualitative observations suggest **overestimation of N=34 gap**.
- Small (d,p) spectroscopic factors, exploring possible interpretations.

- First experimental measurement of exotic π(s<sub>1/2</sub>)⊗ν(fp) interaction conducted by way of <sup>47</sup>K(d,pγ)<sup>48</sup>K.
- Range of **p-wave and f-wave states identified**, each with spin-parity assignments and spectroscopic factors.
- **Preliminary comparison** with shell models; qualitative observations suggest **overestimation of N=34 gap**.
- Small (d,p) spectroscopic factors, exploring possible interpretations.
- Complementary <sup>47</sup>K(d,tγ)<sup>46</sup>K results obtained; no evidence to suggest transfer is "blocked".

## THANK YOU

C.J. Paxman<sup>1</sup>, W.N. Catford<sup>1</sup>, A. Matta<sup>2</sup>, G. Lotay<sup>1</sup>, D.T. Doherty<sup>1</sup>, M. Assié<sup>3</sup>, E. Clément<sup>4</sup>, A. Lemasson<sup>4</sup>, D. Ramos<sup>4</sup>, F. Galtarossa<sup>3</sup>, L. Achouri<sup>2</sup>, D. Ackermann<sup>4</sup>, D. Beaumel<sup>3</sup>, L. Canete<sup>1</sup>, P. Delahaye<sup>4</sup>, J. Dudouet<sup>5</sup>, B. Fernández-Domínguez<sup>6</sup>, D. Fernández-Fernández<sup>6</sup>, F. Flavigny<sup>2</sup>, C. Fougéres<sup>4</sup>, G. de France<sup>4</sup>, S. Franchoo<sup>3</sup>, J. Gibelin<sup>2</sup>, V. Girard-Alcindor<sup>4</sup>, N. Goyal<sup>4</sup>, F. Hammache<sup>3</sup>, D.S. Harrouz<sup>3</sup>, B. Jacquot<sup>4</sup>, L. Lalanne<sup>3,4</sup>, C. Lenain<sup>2</sup>, J. Lois-Fuentes<sup>6</sup>, T. Lokotko<sup>2</sup>, F.M. Marqués<sup>2</sup>, I. Martel<sup>7</sup>, N.A. Orr<sup>2</sup>, L. Plagnol<sup>2</sup>, D. Regueira-Castro<sup>6</sup>, N. de Séréville<sup>3</sup>, J.-C. Thomas<sup>4</sup>, A. Utepov<sup>4</sup>.

[1] Univ. Surrey[2] LPC Caen[3] IJCLab[4] GANIL

[5] IP2I Lyon[6] Univ. Santiago de Compostela[7] Univ. Huelva







C. J. Paxman

- First experimental measurement of exotic  $\pi(s_{1/2}) \otimes \nu(fp)$  interaction.
- Range of p-wave and f-wave states identified.
- Overestimation of N=34 gap by shell model.
- Small (d,p) spectroscopic factors.
- No evidence to suggest transfer is "blocked".

# EXTRA SLIDES



J. Papuga *et al.* PRC 90, 034321 (2014)

Laser spec. at COLLAPS

<sup>47</sup>K structure:  $\pi(s_{1/2})^1 \pi(d_{3/2})^4$


Small spectroscopic factors are not believed to be quenching:

- Papers below find no quenching in transfer reactions.
- 48K not far from stability, so optical potentials are well known

PRL 110, 122503 (2013) PHYSICAL REVIEW LETTERS 22 MARCH 2013

## Limited Asymmetry Dependence of Correlations from Single Nucleon Transfer

F. Flavigny,<sup>1,2</sup> A. Gillibert,<sup>1</sup> L. Nalpas,<sup>1</sup> A. Obertelli,<sup>1</sup> N. Keeley,<sup>3</sup> C. Barbieri,<sup>4</sup> D. Beaumel,<sup>5</sup> S. Boissinot,<sup>1</sup> G. Burgunder,<sup>6</sup> A. Cipollone,<sup>4,7,8</sup> A. Corsi,<sup>1</sup> J. Gibelin,<sup>9</sup> S. Giron,<sup>5</sup> J. Guillot,<sup>5</sup> F. Hammache,<sup>5</sup> V. Lapoux,<sup>1</sup> A. Matta,<sup>5</sup> E. C. Pollacco,<sup>1</sup> R. Raabe,<sup>6,2</sup> M. Rejmund,<sup>6</sup> N. de Séreville,<sup>5</sup> A. Shrivastava,<sup>6</sup> A. Signoracci,<sup>1</sup> and Y. Utsuno<sup>10</sup>

PHYSICAL REVIEW C 92, 041302(R) (2015)

## New findings on structure and production of <sup>10</sup>He from <sup>11</sup>Li with the $(d, {}^{3}\text{He})$ reaction

A. Matta,<sup>1,2</sup> D. Beaumel,<sup>1</sup> H. Otsu,<sup>3</sup> V. Lapoux,<sup>4</sup> N. K. Timofeyuk,<sup>2</sup> N. Aoi,<sup>3</sup> M. Assié,<sup>1</sup> H. Baba,<sup>3</sup> S. Boissinot,<sup>4</sup> R. J. Chen,<sup>3</sup> F. Delaunay,<sup>5</sup> N. de Sereville,<sup>1</sup> S. Franchoo,<sup>1</sup> P. Gangnant,<sup>6</sup> J. Gibelin,<sup>5</sup> F. Hammache,<sup>1</sup> Ch. Houarner,<sup>6</sup> N. Imai,<sup>7</sup> N. Kobayashi,<sup>8</sup> T. Kubo,<sup>3</sup> Y. Kondo,<sup>8</sup> Y. Kawada,<sup>8</sup> L. H. Khiem,<sup>9</sup> M. Kurata-Nishimura,<sup>3</sup> E. A. Kuzmin,<sup>13</sup> J. Lee,<sup>3</sup> J. F. Libin,<sup>6</sup> T. Motobayashi,<sup>3</sup> T. Nakamura,<sup>8</sup> L. Nalpas,<sup>4</sup> E. Yu. Nikolskii,<sup>3,13</sup> A. Obertelli,<sup>4</sup> E. C. Pollacco,<sup>4</sup> E. Rindel,<sup>1</sup> Ph. Rosier,<sup>1</sup> F. Saillant,<sup>6</sup> T. Sako,<sup>8</sup> H. Sakurai,<sup>3</sup> A. M. Sánchez-Benítez,<sup>10,11</sup> J-A. Scarpaci,<sup>1</sup> I. Stefan,<sup>1</sup> D. Suzuki,<sup>1</sup> K. Takahashi,<sup>8</sup> M. Takechi,<sup>3</sup> S. Takeuchi,<sup>3</sup> H. Wang,<sup>3</sup> R. Wolski,<sup>12</sup> and K. Yoneda<sup>3</sup>





